$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

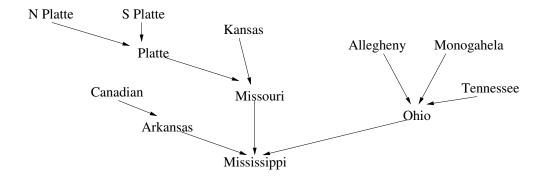
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Domain Rivers	First relation <i>flows into</i> The Platte flows into the Mis- souri, and the Missouri flows into the Mississippi.	Second relation <i>is tributary to</i> The Platte is a tributary to the Missouri; both the Platte and the Missouri are tributaries to the Mississippi.
People	<i>is parent of</i> Bill is Jane's parent; Jane is Leroy's parent	<i>is ancestor of</i> Bill is Jane's ancestor; Leroy has both Jane and Bill as ancestors.

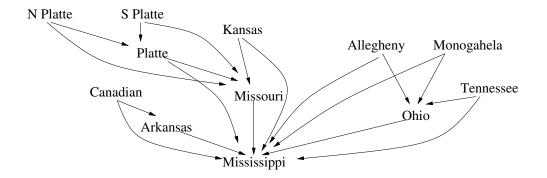
▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

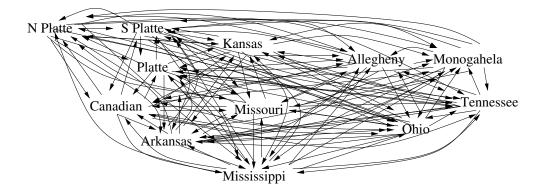
Domain Animals	First relation <i>eats</i> Rabbit eats clover; coyote eats rabbit.	Second relation <i>derives nutrients from</i> Coyote derives nutrients from rabbit; rabbit derives nutrients from clover; both coyote and rabbit ultimately derive nutrients from clover.
\mathbb{Z}	<i>is one less than</i> 2 is one less than 3; 3 is one less than 4	< 2 < 3; 3 < 4; 2 < 4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

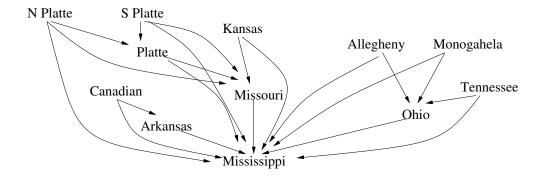


▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣��





(日) (部) (注) (注) (注)



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Theorem 5.12 The transitive closure of a relation R is unique.

Proof. Suppose *S* and *T* are relations fulfilling the requirements for being transitive closures of *R*. By items 1 and 2, *S* is transitive and $R \subseteq S$, so by item 3, $T \subseteq S$. By items 1 and 2, *T* is transitive and $R \subseteq T$, so by item 3, $S \subseteq T$. Therefore S = T by the definition of set equality. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Theorem 5.13 If R is a relation on a set A, then

$$R^{\infty} = \bigcup_{i=1}^{\infty} R^i = \{(x, y) \mid \exists i \in \mathbb{N} \text{ such that } (x, y) \in R^i\}$$

is the transitive closure of R.

Proof. Suppose R is a relation on a set A.

Suppose a, b, $c \in A$, $(a, b), (b, c) \in \mathbb{R}^{\infty}$. By the definition of \mathbb{R}^{∞} , there exist $i, j \in \mathbb{N}$ such that $(a, b) \in \mathbb{R}^{i}$ and $(b, c) \in \mathbb{R}^{j}$. By the definition of relation composition and Exercise 5.7.4, $(a, c) \in \mathbb{R}^{j} \circ \mathbb{R}^{i} = \mathbb{R}^{i+j}$. $\mathbb{R}^{i+j} \subseteq \mathbb{R}^{\infty}$ by the definition of \mathbb{R}^{∞} . By the definition of subset, $(a, c) \in \mathbb{R}^{\infty}$. Hence, \mathbb{R}^{∞} is transitive by definition.

Suppose $a, b \in A$ and $(a, b) \in R$. By the definition of R^{∞} (taking i = 1), $(a, b) \in R^{\infty}$, and so $R \subseteq R^{\infty}$, by definition of subset.

Suppose S is a transitive relation on A and $R \subseteq S$. Further suppose $(a, b) \in R^{\infty}$. Then, by definition of R^{∞} , there exists $i \in \mathbb{N}$ such that $(a, b) \in R^{i}$. By Lemma 5.14, $(a, b) \in S$. Hence $R^{\infty} \subseteq S$ by definition of subset.

Therefore, R^{∞} is the transitive closure of R. \Box