
CSCI
345

Data Structures and Algorithms

Spring 2018 MFW 12:55-2:05 Meyer 131

http://cs.wheaton.edu/~tvandrun/cs345

Thomas VanDrunen
T630-752-5692 H630-639-2255 BThomas.VanDrunen@wheaton.edu

Office: Meyer 163 Office hours:
MWF 3:30–4:30pm;
Th 9:00–10:30am, 11-11:30 and 1:15–3:15pm.

Contents

CATALOG DESCRIPTION. Formal and experimental approaches to verifying algorithms’ correct-
ness and analyzing their efficiency. Abstract data types and their implementations. Efficient im-
plementations of maps using balanced binary search trees and hash tables. Graph algorithms.
Dynamic programming. Prerequisites: CSCI 243 and CSCI 245.

TEXTBOOKS.
Thomas VanDrunen, Algorithmic Commonplaces, 2017. Under contract with Franklin, Beedle and
Associates. Preprint available at the Wheaton College bookstore. [Updates to certain sections will
be made available on Schoology.]

PURPOSE OF THE COURSE. This course is a central part of the computer science major. This is
the place where students’ understanding of algorithmic problem-solving, data abstraction, and
the trade-offs of data structuring strategies are capped off and mastered. Moreover, students
add knowledge of crucial algorithmic techniques and data structures to their toolkit. Specifically
there are six big ideas (the first three are pursued throughout the course, the last three refer to
specific units), which are linked the the CSCI program outcomes.

• The correctness of an algorithm can be verified formally (using loop invariants and other
proof techniques) and empirically (with unit tests). [PO C, E & G]

• The efficiency of an algorithm can be measured formally (using algorithmic analysis, big-oh
categories, etc) and empirically (by running experiments). [PO C, E & G]

• Abstract data types (especially list, stack, queue, set, bag, and map) are specified by how
they are used; data structures (arrays, linked lists, binary trees, hash tables, etc) are im-
plementation strategies, each with trade-offs. [PO A, B & F]

• Searching in an unordered data structure (such as a map) can be done in logarithmic time
using a balanced binary search tree (in principle). [PO D]

• Searching in an unordered data structure can be done in constant time using a hash table
(in principle). [PO D]

• Problems with overlapping subproblems and optimal substructure can be solved efficiently
using dynamic programming. [PO D]

1



COURSE OUTLINE. (For a schedule, see the course website.)

I. Prolegomena

Studying data structures and algorithms requires clear expression of the basic
principles, our assumptions, and model. Much of this is review from Programming
II, but done more carefully and sometimes in a different style.

A. Algorithms and correctness

B. Algorithms and efficiency

C. Abstract data types

II. Case studies

Before hitting the meat of the course, we explore a few extended examples to rein-
force the principles. Moreover, they will be used in later units.

A. Linear sorting

B. Disjoint sets and union/find

C. Heaps and priority queues

D. Bit vectors

III. Graphs

Many problems can be conceptualized as graph problems, and thus many useful
algorithms can be built on variations of standard graph algorithms.

A. Graph concepts

B. Basic traversal algorithms: Depth-first and breath-first

C. Minimum spanning trees

D. Shortest paths

IV. Trees

Our main interest is the several strategies for self-balancing binary search trees;
to get there we first look generally at trees, binary trees, and binary search trees.
Self-balancing binary search trees are a way to address the searching problem.

A. Binary trees

B. Binary search trees

C. Balanced binary search trees

1. AVL trees
2. Red-black trees
3. Left-leaning red-black trees
4. 2-3 trees
5. B-trees

V. Dynamic programming

Dynamic programming is a technique that uses tables to store intermediate results
of recursive algorithms for certain divide-and-conquer problems with overlapping
subproblems.

2



VI. Hashing

Hash tables and other structures that use hashing allow for fast (near constant
time) look-ups while still allowing the structure to grow and shrink easily. They
represent a second way to address the searching problem. You have seen one
approach to hash tables in Programming II (specifically what’s called “separate
chaining”); we here consider other approaches.

A. Hashing general concepts

B. Separate chaining

C. Open addressing with linear probe

D. Hash functions

E. Perfect hashing

VII. String processing

A lot of data used in modern applications is textual data. String processing plays
a crucial role in many of the common uses of computation today.

A. Sorting strings

B. Tries

C. Regular expressions

Course procedures

HOW WE DO THIS COURSE. The rhythm of this course consists in students reading about new
ideas in the text; the ideas being discussed and practiced in class; and students working out the
details of the ideas in projects. Most of students’ work for this course is in projects in which they
will implement the things we discuss in class. Occasionally there will be in-class lab activities,
quizzes, and smaller assignments. On tests, students will apply the things we have learned to
new problems.

PROJECTS. As stated above, projects are where students will do most of their work and, pre-
sumably, most of their learning. To a certain extent, students may work on projects at their own
pace. There are no due dates for projects except that all projects must be turned in by midnight
between Apr 27 (the last day of classes) and Apr 28. Projects will be graded for correctness to be
verified by unit tests (and inspection for general conformity to the intent of the project). Students
will be supplied all unit tests used in grading (except that the right is reserved to modify the
data used in the unit tests to make sure the code hasn’t been hardwired to pass unit tests with
specific data). See the Policies etc section of this syllabus for other details.

TESTS. There will be four tests, currently scheduled as Test 1 on Wed, Feb 21; Test 2 on Mon,
Apr 3; and Tests 3 and 4 on Wed, May 2 (at 10:30 am, this course’s final exam block). Note that
Tests 3 and 4 together constitute the final exam for this course, but will be treated separately for
the purposes of this syllabus. Specifically,

• Test 1 will be on paper and will have conceptual problems from the first third of the course
(prolegomena, case studies, and graphs).

• Test 2 will be at a computer and will have programming problems from the first half of the
course (prolegomena, case studies, graphs, and trees).

• Test 3 will be on paper and will have conceptual problems from the last two-thirds of the
course (trees, dynamic programming, hash tables, and strings).

• Test 4 will be at a computer and will have programming problems from the second half of
the course (dynamic programming, hash tables, and strings).

3



See the Policies etc section of this syllabus for details about the tests at a computer.

READINGS. Students will have reading assignments ahead of most class meetings. The readings
will be enforced by occasionally, unannounced quizzes.

GRADING. Students will not pass the course without at least a 75% score for projects. (Note that
students are given all the test cases used in grading and may resubmit projects throughout the
semester. There is no reason for a student who takes the course seriously and acquires basic
competency not to get 100% on projects.)

instrument weight
Projects 30
Tests 60 (4 @ 15 each)
Other 10

. . . where Other comprises short assignments, in-class activities, readings, quizzes, code style,
etc. Some of these may be graded for correctness, others may be marked as done or not. Also,
students can get extra credit points applied to the “other” category for each mistake in the book
they are the first to discover.

Policies etc

ACADEMIC INTEGRITY. Collaboration among students in the class is permitted on projects and
most assignments. Using code for projects from any outside resources (print, electronic, or
human) is not permitted. Using ideas from outside resources in projects is not recommended,
but if a student does get use any outside resources for concepts used in projects, they must
be cited using the same standards as would be used in a research paper. If you relied on an
outside resource in any way for any project, submit a file with your project named CITATIONS
giving citations for the resources and an explanation of how and why you used them. On any
assignment given from the textbook, no resources that specifically serve as solutions to exercises
from the textbook may be used.

As much as possible, the projects are designed to minimize the opportunity for students to fool
the automated grading, that is, to submit solutions that happen to pass the tests but fail to
implement the intended approach to the problem. Students, however, are expected to abide by
the intent of the projects and shall not submit solutions that “cheat” the unit tests if they discover
a way to do so.

A project or assignment on which a student violates these policies will be rejected without op-
tion to resubmit. Repeated offenses will be handled through the college’s official disciplinary
procedures.

LATE ASSIGNMENTS. Projects have no due date except that all projects must be turned in by the
last day of classes. No projects will be accepted after midnight between Apr 29 and Apr 30. No
credit will be given for late work on other kinds of assignments.

PROJECT GRADING. My intention is to grade projects solely on correctness as demonstrated by
unit tests, but I reserve the right to inspect code for conformance to specifications that are not
easily verified automatically. Also, two projects additionally will be graded for code style, see
below. You will be given all the unit tests used in grading, except that the raw data used by the
unit tests may be different, to prevent students from simply writing code that apes the responses
the specific unit tests check for. Extra credit will be given to students who discover cases not
covered by the given unit tests; in that case, the student must write a JUnit test case and provide
a would-be solution to the project that passes the current set of unit tests but fails the new one.
Bonus extra credit will be awarded if the instructor’s own solution fails the new test. Moreover,
and this is important, that new test case will be distributed to the class and added to the test
cases used in grading. Any student who has already submitted a solution that does not pass the
new test case should resubmit a corrected solution.

CODE STYLE. To encourage students to practice good programming style, two projects will be
graded for conformance for good programming practices, especially informative comments and

4



avoiding unnecessary inefficiency. Each student will chose one project to be graded for style; the
other project will be chosen by the instructor.

TESTS USING COMPUTERS. For Tests 2 and 4, the computer science lab (Meyer 154) will be
reserved for our use. The lab machines will be logged into special accounts for the purpose of
test-taking. Internet access will be turned off. Students will use only Eclipse and a web browser;
the browser will be used only to view a local copy of the Java API. Students will be given a few
JUnit tests to clarify the problem but not the JUnit tests to be used in grading.

ATTENDANCE. Students are expected to attend all class periods. It is courtesy to inform the
instructor when a class must be missed.

EXAMINATIONS. Students are expected to take all tests, quizzes, and exams as scheduled. In
the case where a test must be missed because of legitimate travel or other activities, a student
should notify the instructor no later than one week ahead of time and request an alternate time
to take the test. In the case of illness or other emergencies preventing a student from taking a test
as scheduled, the student should notify the instructor as soon as possible, and the instructor
will make a reasonable accommodation for the student. The instructor is under no obligation to
give any credit to students for tests to which they fail to show up without prior arrangement or
notification in non-emergency situations. The final exam is Wednesday, May 2, at 10:30 am. I
do not allow students to take finals early (which is also the college’s policy), so make appropriate
travel arrangements.

GENDER-INCLUSIVE LANGUAGE. The college requires the following statement to be included on
all syllabi: For academic discourse, spoken and written, the faculty expects students to use gender
inclusive language for human beings.

SPECIAL NEEDS. Institutional statement: Wheaton College is committed to providing reason-
able accommodations for students with disabilities. Any student with a documented disabil-
ity needing academic adjustments is requested to contact the Academic and Disability Ser-
vices Office as early in the semester as possible. Please call 630.752.5941 or send an e-mail
to jennifer.nicodem@wheaton.edu for further information.

My own statement: Whenever possible, classroom activities and testing procedures will be ad-
justed to respond to requests for accommodation by students with disabilities who have doc-
umented their situation with the registrar and who have arranged to have the documentation
forwarded to the course instructor. Computer Science students who need special adjustments
made to computer hardware or software in order to facilitate their participation must also docu-
ment their needs with the registrar in advance before any accommodation will be attempted.

OFFICE HOURS. I try to keep a balance: Stop by anytime, but prefer my scheduled office hours.
Any time my door is closed, it means I’m doing something uninterruptible, such as making an
important phone call. Do not bother knocking; instead, come back in a few minutes or send me
an email.

DRESS AND DEPORTMENT. Please dress in a way that shows you take class seriously—more like
a job than a slumber party. (If you need to wear athletic clothes because of activities before or
after class, that’s ok, but try to make yourself as professional-looking as possible.) If you must
eat during class (for schedule or health reasons), please let the instructor know ahead of time;
we will talk about how to minimize the distraction.

ELECTRONIC DEVICES. Please keep laptops and all electronic devices put away and silenced
during class. That’s right, this is a computer science course, but you’re not allowed to use a
computer during class. Trying out programming concepts on your own during class time (for
example) is not productive because it takes you away from class discussion. You cannot multi-
task as well as you think you can. Moreover, text in class and DIE.

5


