
def bounded_linear_search(sequence, P):

found = False

i = 0

while not found and i < len(sequence) :

found = P(sequence[i])

i = i + 1

if found :
return i − 1

else

return −1

a5

a3n

a4

a6

a2(n + 1)

a1

Tbls(n) = a1 + a2(n + 1) + a3n + a4 + max(a5, a6)
= b0 + b1n



def binary_search(sequence, TO, item):

low = 0
high = len(sequence)
while high − low > 1 :

mid = (low + high) / 2
compar = TO(item, sequence[mid])
if compare < 0:

high = mid
elif compar > 0:

low = mid + 1

else:

low = mid
high = mid + 1

if low < high and TO(item, sequence[low]) == 0:

return low
else:

return −1

c1

c2
c3

c4
c5

c6

c7

c8

c9

c10

Tbs(n) = c1 + c2(lg n + 1) + (c3 + max(c4, c5 + c6, c5 + c7)) lg n
+c8 + max(c9, c10)

= d0 + d1 lg n



def selection_sort(sequence, TO):

min_pos = i
for i in range(len(sequence)):

min = sequence[i]

for j in range(i + 1, len(sequence)):
if TO(sequence[j], min) < 0:

min = sequence[j]

min_pos = j
sequence[min_pos] = sequence[i]

sequence[i] = min

e3n

e6
∑n−1

i=0 (n − i − 1)

e4n + e5
∑n−1

i=0 (n − i)

e1 + e2n

Tsel(n) = f1 + f2n + f3n
2



g(n) ∼ f (n) means the functions are asymptotically equal, that is, that

limn→∞
g(n)
f (n) = 1. Thus n3

6 −
n2

2 + n
3 ∼

n3

6 .

g(n) = O(f (n)), which really should be written g(n) ∈ O(f (n)), means that a scaled
version of f (n) asymptotically bounds g above. It means there exists a c such that

when n is large enough, g(n) ≤ cf (n). Thus n3

6 −
n2

2 + n
3 = O(n

3

6 ) but also
n3

6 −
n2

2 + n
3 = O(n3) and n3

6 −
n2

2 + n
3 = O(n4).

With big-oh, you can throw away the lower ordered terms and throw away the
constant factor of the highest order term and overshoot.

With tilde, you only can throw away the lower ordered terms.



Objections to and misconceptions of big-oh notation take forms such as

I Big-oh notation specifies only an upper bound of running time, which might be
widely imprecise.

I Big-oh notation measures only the worst case, when the best case or the typical
case might be much better.

I Big-oh ignores constants, which can greatly affect running time in practice.

I Algorithms that have the same big-oh category can have widely different running
times in practice.

I Big-oh considers only the size of the input, when in fact other attributes of the
input can greatly affect running time.


