

(日) (四) (문) (문) (문)

def	<pre>binary_search(sequence, TO, item):</pre>	C 1
	low = 0	1
	high = len(sequence)	6
	while high - low > 1 :	C2
	mid = (low + high) / 2	C 3
	<pre>compar = TO(item, sequence[mid])</pre>	
	if compare < 0:	<i>C</i> 4
	$\operatorname{alif}_{\operatorname{compar}} \geq 0$	C5
	low - mid + 1	Č.
		c ₆
	else:	C 7
	low = mid	
	high = mid + 1	Co
	if low < high and TO(item, sequence[low]) == 0:	- 0
	return low	C -
	else:	Cg
	return -1	<i>c</i> ₁₀
	·····	
	$T_{bs}(n) = c_1 + c_2(\lg n + 1) + (c_3 + \max(c_4, c_5 + c_6, c_5 + c_7)) \lg n$	

$$+c_8 + \max(c_9, c_{10})$$

= $d_0 + d_1 \lg n$

$$T_{sel}(n) = f_1 + f_2 n + f_3 n^2$$

▲ロト ▲圖ト ▲画ト ▲画ト 三国 - のへで

 $g(n) \sim f(n)$ means the functions are asymptotically equal, that is, that $\lim_{n\to\infty} \frac{g(n)}{f(n)} = 1$. Thus $\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} \sim \frac{n^3}{6}$.

g(n) = O(f(n)), which really should be written $g(n) \in O(f(n))$, means that a scaled version of f(n) asymptotically bounds g above. It means there exists a c such that when n is large enough, $g(n) \le cf(n)$. Thus $\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} = O(\frac{n^3}{6})$ but also $\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} = O(n^3)$ and $\frac{n^3}{6} - \frac{n^2}{2} + \frac{n}{3} = O(n^4)$.

▲ロト ▲御ト ▲画ト ▲画ト ▲目 ● の Q @

With big-oh, you can throw away the lower ordered terms *and* throw away the constant factor of the highest order term *and* overshoot.

With tilde, you only can throw away the lower ordered terms.

Objections to and misconceptions of big-oh notation take forms such as

- Big-oh notation specifies only an upper bound of running time, which might be widely imprecise.
- Big-oh notation measures only the worst case, when the best case or the typical case might be much better.
- ▶ Big-oh ignores constants, which can greatly affect running time in practice.
- Algorithms that have the same big-oh category can have widely different running times in practice.
- Big-oh considers only the *size* of the input, when in fact other attributes of the input can greatly affect running time.