
Iterators etc

An iterator is an object that gives access to the contents of a collection. Iterators have two
important, related benefits:

• They provide a universal, consistent interface. (Abstraction)

• They do not expose the collection’s internal structure. (Encapsulation)

Thus using iterators we can write a loop over the elements in a collection that will be the same
whether that collection is a list with an array inside, a linked list, or a set with any underlying
implementation. As long as collection c has a method iterator(), we can write a loop like the
following (assuming the base type of the collection is T):
for (Iterator<T> it = c.iterator(); it.hasNext(); ) {

// do something with it.next();
}

Notice that not only is this code independent of whether c has an array or linked list or
something else inside of it, it is even independent of what c’s other public operations are. It
is independent both of c’s implementation and of c’s ADT or interface. An alternate definition
is that an iterator is an object that encapsulates the state of an iteration. It is a bookmark of
sorts hiding the information about where we are in a collection but presenting the programmer
or client code with the needed functionality.

For beginner programmers, the tricky part of using iterators is that the next() method does
two things. It both retrieves the next item from the collection and modifies the state of the iterator
to get it ready for the next call to next() (and hasNext()). Compare the template above for an
iterator loop with loops for iterating over arrays and linked lists:

for (int i = 0;
i < a.length;
i++) {
// do something with a[i]

}

for (Node current = head;
current != null;
current = current.next) {
// do something with current.datum

}

The next() method thus plays the role both of the retrieving of the element in the body of
the loop (a[i] or current.datum) and of the increment (i++ or current = current.next). A
pitfall for novices is calling next() twice in the body of a loop and expecting it to be the same
thing. This is especially easy to do when quickly adding debugging output:
int sum = 0;
for (Iterator<Integer> it = c.iterator(); it.hasNext(); ) {

System.out.println(it.next());
sum += it.next(); // AAAAHHHHH!!!!!!!!

}

If you want to do more than one thing with a item you get from an iterator, you must store it
in a variable:
int sum = 0;
for (Iterator<Integer> it = c.iterator(); it.hasNext(); ) {

int x = it.next();
System.out.println(x);
sum += x; // much better.

}

I am a big fan of the writing of iterators as a test or project problem, because it gets students
thinking about how to encapsulate the state of an iteration over a collection—among other things.
Consider these two static methods that each return an iterator given an array or the head of a
linked list.



static <T>
Iterator<T> arrayToIterator(final T[] array) {

return new Iterator<T>() {
int i =0;
public boolean hasNext() {

return i < array.length;
}
public T next() {

if (! hasNext())
throw new

NoSuchElementException();
else return array[i++];

}
};

}

static <T>
Iterator<T> llToIterator(final Node<T> head) {

return new Iterator<T>() {
Node current = head;
public boolean hasNext() {

return current != null;
}
public T next() {

if (! hasNext())
throw new

NoSuchElementException();
else {

T toReturn = current.datum;
current = current.next;
return toReturn;

}
}

};
}

Iterators are so useful and so widely used that modern programming languages like Java
and Python provide not only library support for them but also integrate them into the languages
themselves. (I just referred to Java and Python, which came out in the ’90s, as modern program-
ming languages. I guess I’m getting old.) Python’s for loops are based on the iterator concept,
and Java has for-each loops (sometimes called enhanced for loops). A for-each loop is really just
shorthand for a for loop using an iterator. That is, the following two loop templates compile to
the same thing:

for (T x : c) {
// do something with x

}

for (Iterator<T> it = c.iterator();
it.hasNext(); ) {
T x = it.next();
// do something with x

}

In a for-each loop, the iterator itself becomes invisible. Not only is this very readable, it also
eliminates the easy mistake mentioned above about calling next() twice in a loop body. Now,
here’s the point that prompted me to write all this: What needs to be assumed about c in order
to use it in the above form? The collection c needs to support a method iterator() with return
type Iterator<T>. Java captures that constraint with the Iterable interface:
interface Iterable<T> {

Iterator<T> iterator();
}

Thus an iterator is an object that encapsulates the state of an iteration over a collection; an
iterable is a collection that can be iterated over. Our ADT interfaces List, Set, Map, and Bag each
extend the Iterable interface. And this is why the adjacents() method in our Graph interface
returns an Iterable instead of an Iterator, so that what is returned from that method can be
used in a for-each loop:
Graph g;
int u;

// ...

for (int v : g.adjacents(u)) {
// do something with v

}

But someone may ask, why can’t Java simply allow c in the template above to be either an
Iterable or an Iterator? Why couldn’t the following code on the left be translated into the
code on the right if c happens to be an Iterator?



for (T x : c) {
// do something with x

}

while (c.hasNext(); ) {
T x = c.next();
// do something with x

}

Well, in theory Java could have been designed to do that. I think the argument against it is
that it would make it easier to write a loop that uses a “stale” iterator, that is, one that is already
partly through its iteration, and that some other part of the code might have a reference to, which
would make concurrent use of the iterator object more likely. The for-each loop as it is defined
forces the loop to be used with a fresh iterator from a call to an Iterable’s iterator() method.

Exercise. There’s always a work-around. Write a static method iteratorToIterable() that
takes an Iterator and returns an Iterable wrapper for the given Iterator, adapting it to be
used in a for-each loop. (This is not difficult at all if you’ve understood the principles up to this
point. You can find a solution on the last page.)

One more thing to learn about iterators. The way we think of iterators (or, really, the way
iterators are done in Java and Python and similar popular languages) isn’t the only way. The
Design Patterns book gives an alternative, which seems mostly to have been forgotten over the
years. They call the kind of iterator we know the external iterator, external in the sense that it
uses an object external to the collection being iterated over. With the external iterator, the client
code says, “Hey collection, I want do some operation on every element in you. Please give me a
way to retrieve each of those elements.”

The alternative, called the internal iterator, switches it up, with the client code instead saying,
“Here’s the operation that I want to do on your elements. Could you please see that it gets
applied to all of them?” This is more in line with functional programming, since the operation to
be performed on every element in a collection is a function object. Here is an array-list-like class
that supports the internal iterator pattern:
public class IIAL {

public static interface Operation {
void execute(int x);

}

private int[] internal;

public void internalIterator(Operation op) {
for (int i = 0; i < internal.length; i++)

op.execute(internal[i]);
}

}

And here is a method that would compute the sum of a given IIAL:
static int sumIIAL(IIAL c) {

IIAL.Operation summer = new IIAL.Operation() {
int sum = 0;
public void execute(int x) { sum += x; }

}
c.internalIterator(summer);
return summer.sum;

}



Solution to the exercise.
static <T> Iterable<T> iteratorToIterable(final Iterator<T> it) {

return new Iterable<T>() {
public Iterator<T> iterator() {

return it;
}

};
}


