


Lemma (Safe edges in Kruskal's algorithm.)

If G =(V,E) is a graph, A is a subset of a minimum spanning tree for G, (u, v)
is the lightest edge connecting any distinct connected components of A, then
(u,v) is a safe edge for A, that is, AU {(u, v)} is a subset of a minimum
spanning tree.



Proof. Suppose everything in the hypothesis, in particular that A is a subset of
some minimum spanning tree T and that u and v are in distinct connected
components of A, call them A, and A,. Let wr be the total weight of T, that is,
the sum of the weights of all the edges of T. We want to prove that adding (u, v)
to A makes something that is still a subset of some minimum spanning tree.

If (u,v) € T, then we're done. Suppose, then, that T does not contain (u, v).
Since T is a spanning tree, it means that v and v are connected in T. Pick the
lightest edge on the path from u to v that is not in A, call it (x, y). Essentially
(x,y) is an edge that was picked instead of (u, v) that contributed to connecting
A, and A,.



Snip out (x,y). This would disconnect T, that is, the graph T — {(x, y)} is not
a tree, but rather contains two connected components, one with v in it and the
other with v in it. Now splice in (u, v). That will reconnect u and v and make it
into a tree again. Formally we've made a new spanning tree

(T = {( )} U{(u, v)}

The hypothesis says that (u, v) was the lightest edge connecting distinct
components of A. That means w(u, v) < w(x,y). That in turn means that the
total weight of the new spanning tree is also just as good, if not better, than the
old one: w(T — {(x,y)}) U {(u,v)} < wr. Since it ties or beats a (supposed)
minimum spanning tree, (T — {(x,y)}) U {(u, v)} must be a minimum spanning
tree. Therefore (u, v) is safe. O



initialize A to ()
make a disjoint-set data structure with each vertex its own set
sort the edges by weight
for each edge (u, v)
if findSet(u) # findSet(v)
add (u,v) to A

union(u, v)



initialize A to ()
initialize all vertices with distance oo and parent —1
initialize pg with all vertices
while pg is not empty
u = pg.extractMax()
if up#—1
add (u.p,u) to A
for each v € u.adj
if v € pgand (u,v).w < v.distBound
v.p=u
v.distBound = (u, v).w
pq.increaseKey(v)



