
0
1

2

3

5

6

7

8

4

18
17

23

24
16

6 6

12
8

8

3

6

3

12

7

23

12

9

12

4



Lemma (Safe edges in Kruskal’s algorithm.)

If G = (V ,E ) is a graph, A is a subset of a minimum spanning tree for G , (u, v)
is the lightest edge connecting any distinct connected components of A, then
(u, v) is a safe edge for A, that is, A ∪ {(u, v)} is a subset of a minimum
spanning tree.



Proof. Suppose everything in the hypothesis, in particular that A is a subset of
some minimum spanning tree T and that u and v are in distinct connected
components of A, call them Au and Av . Let wT be the total weight of T , that is,
the sum of the weights of all the edges of T . We want to prove that adding (u, v)
to A makes something that is still a subset of some minimum spanning tree.

If (u, v) ∈ T , then we’re done. Suppose, then, that T does not contain (u, v).
Since T is a spanning tree, it means that u and v are connected in T . Pick the
lightest edge on the path from u to v that is not in A, call it (x , y). Essentially
(x , y) is an edge that was picked instead of (u, v) that contributed to connecting
Au and Av .



Snip out (x , y). This would disconnect T , that is, the graph T − {(x , y)} is not
a tree, but rather contains two connected components, one with u in it and the
other with v in it. Now splice in (u, v). That will reconnect u and v and make it
into a tree again. Formally we’ve made a new spanning tree
(T − {(x , y)}) ∪ {(u, v)}.

The hypothesis says that (u, v) was the lightest edge connecting distinct
components of A. That means w(u, v) ≤ w(x , y). That in turn means that the
total weight of the new spanning tree is also just as good, if not better, than the
old one: w(T − {(x , y)}) ∪ {(u, v)} ≤ wT . Since it ties or beats a (supposed)
minimum spanning tree, (T − {(x , y)}) ∪ {(u, v)} must be a minimum spanning
tree. Therefore (u, v) is safe. �



initialize A to ∅
make a disjoint-set data structure with each vertex its own set
sort the edges by weight
for each edge (u, v)

if findSet(u) 6= findSet(v)
add (u, v) to A
union(u, v)



initialize A to ∅
initialize all vertices with distance ∞ and parent −1
initialize pq with all vertices
while pq is not empty

u = pq.extractMax()
if u.p 6= −1

add (u.p, u) to A
for each v ∈ u.adj

if v ∈ pq and (u, v).w < v .distBound
v .p = u
v .distBound = (u, v).w
pq.increaseKey(v)


