Compute the cardinality:
$|\{1,2,3,4,5\} \cup\{3,4,5,6\}|$

$$
|[0, \pi) \cap \mathbb{Z}|
$$

|FacultyInThisRoom - StudentsInThisRoom|

Which are disjoint?
\mathbb{Z} and \mathbb{R}
\mathbb{Z} and \mathbb{R}^{-}
$[0,5)$ and $[5,10)$
Plants and Fungi
MathClasses and CSCIClasses
DeciduousTrees and ConiferousTrees
1.8.1 What is the cardinality of $\{0,1,2, \ldots n\}$?
1.8.3 One might be tempted to think $|A \cup B|=|A|+|B|$, but this is not true in general. Why not? (Assume A and B are finite.)
1.8.6 Describe three distinct partitions of the set \mathbb{Z}.
1.9.5 Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.
1.9.6 Explain how \mathbb{C}, the set of complex numbers, can be thought of as a Cartesian product.
1.9.7 Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as $(1,2)$ and $\frac{3}{4}$ as $(3,4)$) and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets cannot be thought of as two different ways to write the same set. (There are at least two reasons.)

