Compute the cardinality:

$$|\{1,2,3,4,5\} \cup \{3,4,5,6\}|$$

$$|[0,\pi)\cap\mathbb{Z}|$$

| FacultyInThisRoom - StudentsInThisRoom |

Which are disjoint?

 $\mathbb Z$ and $\mathbb R$

 \mathbb{Z} and \mathbb{R}^-

 $\left[0,5\right)$ and $\left[5,10\right)$

Plants and Fungi

MathClasses and CSCIClasses

DeciduousTrees and ConiferousTrees

- **1.8.1** What is the cardinality of $\{0, 1, 2, ..., n\}$?
- **1.8.3** One might be tempted to think $|A \cup B| = |A| + |B|$, but this is not true in general. Why not? (Assume A and B are finite.)
- **1.8.6** Describe three distinct partitions of the set \mathbb{Z} .

- **1.9.5** Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.
- **1.9.6** Explain how \mathbb{C} , the set of complex numbers, can be thought of as a Cartesian product.
- **1.9.7** Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as (1,2) and $\frac{3}{4}$ as (3,4)) and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets cannot be thought of as two different ways to write the same set. (There are at least two reasons.)