A relation f from X to Y is a function (written $f: X \to Y$) if $\forall x \in X$, (1) $\exists y \in Y \mid (x, y) \in f$, and (2) $\forall y_1, y_2 \in Y$, (x, y_1) , $(x, y_2) \in f \to y_1 = y_2$.

Not a function.

(There's a domain element that is related to two things.)

Not a function.

(There's a domain element that is not related to anything.)

A function.

(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

Image

$$F(A) = \{ y \in Y \mid \exists \ x \in A \text{ such that } f(x) = y \}$$

Inverse image

$$F^{-1}(B) = \{x \in X \mid f(x) \in B\}$$

Lemma 7.2. If $f: X \to Y$, then $F(\emptyset) = \emptyset$.

Lemma 7.3. If $f: X \to Y$, $A \subseteq X$, and $A \neq \emptyset$, then $F(A) \neq \emptyset$.

Lemma 7.4. If $f: X \to Y$, then $F^{-1}(\emptyset) = \emptyset$.

We might expect the following, but it's not true:

Lemma XXXX. If $f: X \to Y$, $A \subseteq Y$, and $A \neq \emptyset$, then $F^{-1}(A) \neq \emptyset$.