A relation from one set to another

A relation on a set

The image of an element under a relation

The image of a set under a relation

The inverse of a relation

The composition of two relations
subset of $X \times Y$
$R \subseteq X \times Y$
R set of pairs subset of $X \times X$ $R \subseteq X \times X$
set of things that a is related to $\mathcal{I}_{R}(a)=\{b \in Y \mid(a, b) \in R\}$
set of things that things in A are related to $\mathcal{I}_{R}(A)=\{b \in Y|\exists a \in A|(a, b) \in R\}$
the arrows/pairs of R reversed
$R^{-1}=\{(b, a) \in Y \times X \mid(a, b) \in R\}$
two hops combined to one hop
(Assume $S \subseteq Y \times Z$)

$$
\begin{aligned}
& S \circ R=\{(a, c) \in X \times Z \mid \exists b \in Y \\
& \mid(a, b) \in R \wedge(b, c) \in S\}
\end{aligned}
$$

everything is related only to itself $=$ $i_{X}=\{(x, x) \mid x \in X\}$
isEnrolledIn, isTaughtBy
eats, divides
classes Bob is enrolled in, numbers that 4 divides
classes Bob, Larry, or Alice are taking, numbers that 2,3 , or 5 divide
hasOnRoster, teaches, isEatenBy, isDivisibleBy
hasAsProfessor, eatsSomethingThatEats

Reflexivity

Informal
Everything is related to itself

Formal $\quad \forall x \in X,(x, x) \in R$

Visual
 isAquaintedWith

Examples $\subseteq, \leq, \geq, \equiv, i$, isAquaintedWith, waterVerticallyAligned

三, isOppositeOf, isOnSameRiver,

Transitivity

Anything reachable by two hops is reachable by one hop

$$
\begin{array}{ll}
\forall x, y \in X,(x, y) \in R \rightarrow & \forall x, y, z \in X \\
(y, x) \in R & (x, y),(y, z) \in R \rightarrow(x, z) \in R \\
\text { OR } & \text { OR } \\
\forall(x, y) \in R,(y, x) \in R & \forall(x, y),(y, z) \in R,(x, z) \in R
\end{array}
$$

$<, \leq,>, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

Symmetry

All pairs are mutual

Operators $x+y$

$$
-x
$$

Distribution $x \cdot(y+z)$

$$
=x \cdot y+x \cdot z
$$

Identity

$$
\begin{aligned}
& x+0=x \\
& x \cdot 1=x
\end{aligned}
$$

$$
\begin{aligned}
& p \vee q \\
& \sim p
\end{aligned}
$$

$$
p \wedge(q \vee r)
$$

$$
\equiv(p \wedge q) \vee(p \wedge r) \quad=(A \cap B) \cup(A \cap C)
$$

$p \vee T \equiv p$
$A \cup \emptyset=A$
$p \wedge F \equiv p$

$$
\begin{aligned}
& \{(1,2),(2,3),(5,2),(1,5),(2,5),(1,3)\} \\
& \{(1,2),(2,3),(5,2),(1,5),(2,5),(1,3)\} \\
& \{(1,2),(2,3),(5,2),(1,5),(2,5),(1,3)\} \\
& \{(1,2),(2,3),(5,2),(1,5),(2,5),(1,3)\}
\end{aligned}
$$

Domain	First relation flows into The Platte flows into the Mis- souri, and the Missouri flows into the Mississippi.	Second relation is tributary to
The Platte is a tributary to the		
Missouri; both the Platte and		
the Missouri are tributaries to the		
Mississippi.		

Domain

Animals \begin{tabular}{l}
First relation

eats

Rabbit eats clover; coyote eats

rabbit.

\quad

Second relation

derives nutrients from

Coyote derives nutrients from

rabbit; rabbit derives nutrients

from clover; both coyote and

rabbit ultimately derive nutrients

from clover.
\end{tabular}

Theorem 5.12 The transitive closure of a relation R is unique.

Proof. Suppose S and T are relations fulfilling the requirements for being transitive closures of R. By items 1 and 2, S is transitive and $R \subseteq S$, so by item 3, $T \subseteq S$. By items 1 and 2, T is transitive and $R \subseteq T$, so by item 3, $S \subseteq T$. Therefore $S=T$ by the definition of set equality.

Theorem 5.13 If R is a relation on a set A, then

$$
R^{\infty}=\bigcup_{i=1}^{\infty} R^{i}=\left\{(x, y) \mid \exists i \in \mathbb{N} \text { such that }(x, y) \in R^{i}\right\}
$$

is the transitive closure of R.
Proof. Suppose R is a relation on a set A.
Suppose $a, b, c \in A,(a, b),(b, c) \in R^{\infty}$. By the definition of R^{∞}, there exist $i, j \in \mathbb{N}$ such that $(a, b) \in R^{i}$ and $(b, c) \in R^{j}$. By the definition of relation composition and Exercise 5.7.4, $(a, c) \in R^{j} \circ R^{i}=R^{i+j} . R^{i+j} \subseteq R^{\infty}$ by the definition of R^{∞}. By the definition of subset, $(a, c) \in R^{\infty}$. Hence, R^{∞} is transitive by definition.
Suppose $a, b \in A$ and $(a, b) \in R$. By the definition of R^{∞} (taking $i=1$), $(a, b) \in R^{\infty}$, and so $R \subseteq R^{\infty}$, by definition of subset.
Suppose S is a transitive relation on A and $R \subseteq S$. Further suppose $(a, b) \in$ R^{∞}. Then, by definition of R^{∞}, there exists $i \in \mathbb{N}$ such that $(a, b) \in R^{i}$. By Lemma 5.14, $(a, b) \in S$. Hence $R^{\infty} \subseteq S$ by definition of subset.
Therefore, R^{∞} is the transitive closure of R.

