

$$
C[i][j]= \begin{cases}0 & \text { if } i=0 \\ i & \text { if } j=0 \\ \min _{0 \leq k<\frac{i}{D[j]}}\{k+C[i-k \cdot D[j]][j-1]\} & \text { otherwise }\end{cases}
$$

0-1 Knapsack.

Given a capacity c and the value and weight of n items in arrays V and W, find a subset of the n items whose total weight is less than or equal to the capacity and whose total value is maximal.

V				
W	20	15	90	100
	1	2	4	5
	0	1	2	3

set	weight	value	
$\{2,3\}$	9	190	exceeds capacity
$\{1,3\}$	7	115	not optimal
$\{0,1,2\}$	7	125	optimal

Longest common subsequence.

Given two sequences, find the longest subsequence that they have in common.
$\begin{array}{llllllllllllll}\text { D } & \text { A } & \text { T } & \text { A } & \text { S } & \text { T } & R & U & C & T & U & R & E & S \\ \text { A } & L & G & O & R & I & T & M & S & & & & & \end{array}$
$\begin{array}{llllll}\text { A } & \text { B } \\ \text { A } & \text { B } & \text { A }\end{array}$ A $\begin{array}{llllll}\text { A } & \text { B } \\ \text { A } & \text { B } & \text { A }\end{array}$
$\begin{array}{lllllllllllllllllllll}A & A & A & A & A & B & A & A & A & A & & & & A & A & A & A & A & B & A & A\end{array} A$

Matrix multiplication.

Given $n+1$ dimensions of of n matrices to be multiplied, find the optimal order in which to multiply the matrices, that is, find the parenthesization of the matrices that will minimize the number of scalar multiplications.

Assume the following matrices and dimensions: $A, 3 \times 5 ; B, 5 \times 10 ; C, 10 \times 2$, $D, 2 \times 3 ; E, 3 \times 4$.

$$
(A \times B) \times(C \times(D \times E))
$$

$$
3 \cdot 5 \cdot 10+2 \cdot 3 \cdot 4+10 \cdot 2 \cdot 4+3 \cdot 10 \cdot 4=374
$$

$(A \times(B \times C)) \times(D \times E)$

$$
5 \cdot 10 \cdot 2+2 \cdot 3 \cdot 4+3 \cdot 5 \cdot 2+3 \cdot 2 \cdot 4=178
$$

$A \times(B \times(C \times(D \times E)))$

$$
2 \cdot 3 \cdot 4+10 \cdot 2 \cdot 4+5 \cdot 10 \cdot 4+3 \cdot 5 \cdot 4=364
$$

Problem	Thing to find	Optimization	Constraint
Coin-changing	A set of coins.	Minimize the number of coins.	The coins' values sum to the given amount.
Knapsack	A set of objects	Maximize the sum of the objects' values.	The sum of the objects' weights doesn't exceed the given capacity.
Longest common subsequence	A subsequence in each of two given sequences.	Maximize the length of the subsequences.	The subsequences have the same content.
Matrix multiplication	A way to parenthesize the the matrices being multiplied.	Minimize the number of scalar multiplications required.	The parenthesization is complete and mathematically coherent.
Optimal BST	A BST for a given set of keys	Minimize the expected length of a search.	The tree satisfies the criteria for a BST.

