Theorem $\mathscr{H}_{p m}$ is universal.
Proof. Suppose p and m as specified earlier. Suppose $k, \ell \in$ Keys, and $h_{a b} \in \mathscr{H}_{p m}$ (which implies supposing that $a \in[1, p)$ and $b \in[0, p)$).
Let $r=(a \cdot k+b) \bmod p$ and $s=(a \cdot \ell+b) \bmod p$
Subtracting gives us

$$
\begin{aligned}
r-s & \equiv(a \cdot k+b)-(a \cdot \ell+b) & & \bmod p \\
& \equiv a \cdot(k-\ell) & & \bmod p
\end{aligned}
$$

Now a cannot be 0 because $a \in[1, p)$. Similarly $k-\ell$ cannot be 0 , since $k \neq \ell$. Hence a $\cdot(k-\ell) \neq 0$.
Since p is prime and greater than a, k, and ℓ, it cannot be a factor of $a \cdot(k-\ell)$. In other words, $a \cdot(k-\ell) \bmod p \neq 0$. By substitution, $r-s \neq 0$, and so $r \neq s$.
By another substitution, $(a \cdot k+b) \bmod p \neq(a \cdot \ell+b) \bmod p$.

Define the following function, given k and ℓ, which maps from (a, b) pairs to (r, s) pairs (formally, $[1, p) \times[0, p) \rightarrow[1, p) \times[0, p)$):

$$
\phi_{k \ell}(a, b)=((a \cdot k+b) \bmod p,(a \cdot \ell+b) \bmod p)
$$

Now consider the inverse of that function.

$$
\begin{aligned}
\phi_{k \ell}^{-1}(r, s) & \left.=\left(\left((r-s) \cdot(k-\ell)^{-1}\right) \bmod p\right),(r-a k) \bmod p\right) \\
& =(a, b)
\end{aligned}
$$

The existence of ϕ^{-1} implies that ϕ is a one-to-one correspondence. Hence for each (a, b) pair, there is a unique (r, s) pair. Since the pair (a, b) specifies a hash function, that means that for each hash function in the family $\mathscr{H}_{p m}$, there is a unique (r, s) pair.

There are $p-1$ possible choices for a and p choices for b, so there are $p \cdot(p-1)$ hash functions in family $\mathscr{H}_{p m}$. Likewise there are p choices for r, and for each r there are $p-1$ choices for s (since $s \neq r$). Thus we can partition the set $\mathscr{H}_{p m}$ into p subsets by r value, each subset having $p-1$ hash functions.
For a given r, at most one out of every m can have an s that is equivalent to r mod m, in other words, at most $\frac{p-1}{m}$ hash functions.
Now sum that for all p of the subsets of $\mathscr{H}_{p m}$, and we find that the number of hash functions for which k and ℓ collide are

$$
p \cdot \frac{p-1}{m}=\frac{p \cdot(p-1)}{m}=\frac{\left|\mathscr{H}_{p m}\right|}{m}
$$

Therefore $\mathscr{H}_{p m}$ is universal by definition.

Theorem [Probability of any collisions.] If Keys is a set of keys, $m=\mid$ Keys $\left.\right|^{2}, p$ is a prime greater than all keys, and $h \in \mathscr{H}_{p m}$, then the probability that any two distinct keys collide in h is less than $\frac{1}{2}$.

Proof. Suppose we have a set Keys, $m=\mid$ Keys $\left.\right|^{2}$, p is a prime greater than all keys, and $h \in \mathscr{H}_{p m}$.
Consider the number of pairs of unique keys. The number of pairs of keys is

$$
\binom{n}{2}=\frac{n!}{2!\cdot(n-2)!}=\frac{n!}{2 \cdot(n-2)!}=\frac{n \cdot(n-1) \cdot(n-2)!}{2 \cdot(n-2)!}=\frac{n \cdot(n-1)}{2}
$$

Since $\mathscr{H}_{p m}$ is universal, each pair collides with probability $\frac{1}{m}$. Multiply that by the number of pairs, and the expected number of collisions is

$$
\begin{aligned}
\frac{n \cdot(n-1)}{2} \cdot \frac{1}{m} & <\frac{n^{2}}{2} \cdot \frac{1}{m} & & \text { since } n \cdot(n-1)<n^{2} \\
& =\frac{n^{2}}{2} \cdot \frac{1}{n^{2}} & & \text { since } m=n^{2} \\
& =\frac{1}{2} \quad & & \text { by cancelling } n^{2}
\end{aligned}
$$

With the expected number of collisions less than one half, the probability there are any collisions is also less than $\frac{1}{2}$.

$$
h_{6}(k)=(93,0) \in \mathscr{H}_{101} 10
$$

