Minimum Spanning Tree Problem

Given a weighted, undirected graph, find the tree with least-total weight that connects all the vertices, if one exists.

Single-Source Shortest Paths Problem

Given a weighted directed graph and a source vertex, find the tree comprising the shortest paths from that source to all other reachable vertices.

- Both are defined for weighted graphs
- Both produce trees as a result
- Both minmize by weight
- For each we have two algorithms

Input is only a graph
Problem usually is described on an undirected graph
Goal is to minimize total weight
There is no clear winner between the algorithms

Input is a graph and a starting point
Problem usually is described on a directed graph
Goal is to minimize weight on each path
One algorithm is clearly more efficient

Bellman-Ford Algorithm (SSSP)

Initialize all vertices to have infinite bound and no parent
s.distBound $=0$

Repeat $|V|-1$ times
For each $u \in V$
For each $v \in \operatorname{adjacents}(u)$
If v.distBound $>u$.distBound $+(u, v) . w$
v. distBound $=u$.distBound $+(u, v) . w$
v.parent $=u$

Dijkstra's Algorithm (SSSP)

Initialize all vertices to have infinite bound and no parent
s.distBound $=0$

Make a priority queue $p q$ with all vertices
While $p q$ is not empty

```
\(u=p q . e x t r a c t M a x()\)
    For each \(v \in \operatorname{adjacents}(u)\)
        If \(v\). distBound \(>u . d i s t B o u n d+(u, v) . w\)
            \(v\). distBound \(=u . d i s t B o u n d+(u, v) . w\)
            \(v\).parent \(=u\)
                pq.increaseKey(v)
```


