
Ex 1.3.
Part a.

P(Y = a) = P(x = r ,Y = a) + P(X = b,Y = a) + P(X = g ,Y = a) = .34

Part b, directly:

P(X = g | Y = o) =
P(X = g ,Y = o)

P(Y = o)
=
.6 · .3
.36

= .5

Part b, using Bayes’s theorem:

P(X = g | Y = o) =
P(Y = o | X = g)P(X = g)

P(Y = o)
=
.3 · .6
.36

= .5



Ex 1.5. We’re asked to show E[(f (x)− E[f (x)])2] = E[f (x)2]− E[f (x)]2.

E[(f (x)− E[f (x)])2]

=
∑
x

p(x)(f (x)− E[f (x)])2

=
∑
x

p(x)(f (x)2 − 2f (x)E[f (x)] + E[f (x)]2)

=

(∑
x

p(x)f (x)2

)
−

(
2E[f (x)]

∑
x

p(x)f (x)

)
+

(
E[f (x)]2

∑
x

p(x)

)

= E[f (x)2]− 2E[f (x)]E[f (x)] + E[f (x)]2

= E[f (x)2]− E[f (x)]2



Ex 1.6. We’re asked to show that if X and Y are independent, then
EX ,Y [XY ] = E[X ]E[Y ].

EX ,Y [XY ] =
∑
x

xy p(x , y) “joint” expectation

=
∑
x

∑
y

xy p(x) p(y) since X and Y are independent

=
∑
x

∑
y

(xp(x) yp(y)) =
∑
x

(
xp(x)

∑
y

yp(y)

)

=
∑
x

(xp(x)E[Y ]) = E[Y ]
∑
x

xp(x)

= E[X ]E[Y ]



Gaussian distribution:

N (x |µ, σ2) = 1

σ
√
2π

e
−(x−µ)2

2σ2

Calculating µ for maximum likelihood:

µML =
1

N

N∑
i=1

xi

Calculating the probability of data x for a
given µ and σ2:

p(x |µ, σ2) =
N∏
i=1

N (xi |µ, σ2)

Calculating σ2 for maximum likelihood:

σ2ML =
1

N

N∑
i=1

(xi − µML)
2


