Ex 1.3.
Part a.

$$
P(Y=a)=P(x=r, Y=a)+P(X=b, Y=a)+P(X=g, Y=a)=.34
$$

Part b, directly:

$$
P(X=g \mid Y=o)=\frac{P(X=g, Y=0)}{P(Y=o)}=\frac{.6 \cdot .3}{.36}=.5
$$

Part b, using Bayes's theorem:

$$
P(X=g \mid Y=o)=\frac{P(Y=o \mid X=g) P(X=g)}{P(Y=o)}=\frac{.3 \cdot .6}{.36}=.5
$$

Ex 1.5. We're asked to show $\mathbb{E}\left[(f(x)-\mathbb{E}[f(x)])^{2}\right]=\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}$.

$$
\begin{aligned}
\mathbb{E} & {\left[(f(x)-\mathbb{E}[f(x)])^{2}\right] } \\
& =\sum_{x} p(x)(f(x)-\mathbb{E}[f(x)])^{2} \\
& =\sum_{x} p(x)\left(f(x)^{2}-2 f(x) \mathbb{E}[f(x)]+\mathbb{E}[f(x)]^{2}\right) \\
& =\left(\sum_{x} p(x) f(x)^{2}\right)-\left(2 \mathbb{E}[f(x)] \sum_{x} p(x) f(x)\right)+\left(\mathbb{E}[f(x)]^{2} \sum_{x} p(x)\right) \\
& =\mathbb{E}\left[f(x)^{2}\right]-2 \mathbb{E}[f(x)] \mathbb{E}[f(x)]+\mathbb{E}[f(x)]^{2} \\
& =\mathbb{E}\left[f(x)^{2}\right]-\mathbb{E}[f(x)]^{2}
\end{aligned}
$$

Ex 1.6. We're asked to show that if X and Y are independent, then $\mathbb{E}_{X, Y}[X Y]=\mathbb{E}[X] \mathbb{E}[Y]$.

$$
\begin{array}{rlrl}
\mathbb{E}_{X, Y}[X Y] & =\sum_{x} x y p(x, y) & & \text { "joint" expectation } \\
& =\sum_{x} \sum_{y} x y p(x) p(y) & & \text { since } X \text { and } Y \text { are independent } \\
& =\sum_{x} \sum_{y}(x p(x) y p(y)) & =\sum_{x}\left(x p(x) \sum_{y} y p(y)\right) \\
& =\sum_{x}(x p(x) \mathbb{E}[Y]) & & =\mathbb{E}[Y] \sum_{x} x p(x) \\
& =\mathbb{E}[X] \mathbb{E}[Y] & &
\end{array}
$$

Gaussian distribution:

$$
\mathcal{N}\left(x \mid \mu, \sigma^{2}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Calculating μ for maximum likelihood:

$$
\mu_{M L}=\frac{1}{N} \sum_{i=1}^{N} x_{i}
$$

Calculating the probability of data \mathbf{x} for a Calculating σ^{2} for maximum likelihood: given μ and σ^{2} :

$$
p\left(\mathbf{x} \mid \mu, \sigma^{2}\right)=\prod_{i=1}^{N} \mathcal{N}\left(x_{i} \mid \mu, \sigma^{2}\right)
$$

$$
\sigma_{M L}^{2}=\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\mu_{M L}\right)^{2}
$$

