CSCI 394—ML SVM algorithm April 3, 2019

e Review of formulas
e Using a QP solver

e Training and using a classifier

Let ¢ be a feature space mapping and k be a kernel function, k(x;,x;) = ¢(x;)T ¢(x;).
General goal: Define a hyperplane w’ ¢(x) 4+ wg = 0 such that y(x) = wl¢(x) + wp. classifies x

I have changed the intercept from b (as it appears in the book and appeared in the original version of the handout)
to wp so that it does not clash with b in the quadratic programming cannonical form below.

With constraint Vi € [1,N], ¢ (w7¢(x;) + wo) > 1, maximize the margin between the hyperplane and the closest
point by finding

argmax { W] mm [t (Wwho(x;) + wo)]} = argmax { ] } = argmin {%||w|} = argmin {%WTW}

W,Wo W,Wwo W,Wo W,wo

This quadratic programming problem has an equivalent Lagrangian function
‘C(Waw07 = _||W||_Zaz P T(ZS X1)+w0))

where a is the vector of Lagrangian multipliers.

Let K be the kernel matriz for data set x1,Xo,...Xpn:

k(x1,%x1)  k(x2,x1) -+  k(xn,X1)
k(x1,x2) k(x2,x2) -+ k(xN,X2)
k(x1,xN)  k(x2,xN) -+ k(XN,XN)

The Lagrangian function has the dual representation

Zal——ZZaza]tthl,%)—l a—%a (ttT) o Ka

=1 5=1

which we want to maximize subject to constraints 0 < a;[< C], V ¢ € [1,N] and Z;N:l a;t; = 0. The targets t
make a column vector, and so tt” is a square matrix of the same dimensionality as K. The o operator indicates
the Hadamard product, which is entry-wise multiplication of two matrices with the same dimension. The result is a
matrix containing the kernel results each multiplied by the product of the corresponding targets:

TL| 'IL\ '/\‘(X'|.X1) f_) 'YL] '/1’<X2.X'|> YL\ 'IL\ '/\‘(XN.X'|)

T /| '/~_)'A‘(X'1.X2) /2‘/3‘]x‘(X2.X2> /\"/;)'A‘(XN.XQ)
tt" )oK =

T]'f\'/\'(X1.XN) fg'f\-/\‘(Xg.XN) f\-f\-/\'(XN.XN)

A quadratic programming problem can be stated as, minimize %XTPX + q"x subject to Gx < h and Ax = b.

In the original handout, b above was b, a scalar, and we vacillated on whether it should be a vector or scalar. In
the cannonical form for quadratic programming, it is a vector. Additionally, x is an n x 1 (column) vector, P is an
n X n symmetric matrix, G is an m X n matrix, h is a m x 1 (column) vector, A is a £ x n matrix, and b is a ¢ x 1
(column) vector.
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To find a. Let P =tt"K, g = . 7A:(t1 ty --- tn)7andb:(0).

-1
Notice that in this problem, A is a 1 x n matrix, effectively a row vector, and b is a 1 X 1 column vector, effectively a

scalar. This was the source of ambiguity about whether b should be a vector or a scalar. It is a vector in the general
problem, but a scalar (as a degenerate vector) in this specific problem. Thanks to Drew and Haley for tracking this

down. Also notice that tt” has a matrix result, (tt7) o K is
-1 0 0 0
o -1 ... O 0
For hard margin classification (0 < a;), G=-Z=| . . |,h=0=
0 0 -1 0
1 0 0 C
0 1 0 o
For soft margin classification (0 < a; <C),G=] 0 0 Ll n= g
-1 0 ... O
0 -1 0 0
0 0 -1 0

Support vectors are {x; | a; # 0}. Weights are

N
W = E aitixi = E aitixi
i=1

i:1|a7¢;£0

Intercept is

1 N N
O T a0 2\ 2
v j=1la;#0 i=1]a;#0

To train a classifier for hard margin classification:

Given data, targets, and k,
Compute kernel matrix K
Compute P = ttTK
Assemble q vector of —1s
Assemble A matrix of ¢; along the diagonal
Assemble G matrix of —1s along the diagonal
Assemble h verctor of Os
Compute a vector by feeding P, q, G, h, A, and b=0 into QP solver
Select support vectors from a that are not zero
Compute wy

(For soft margin, modify G and h.)

To classify new data point x, compute vazllaiio a;tik(x;,x) + wp

Next time: Lab work time (Fri); principal component analysis (Mon) }
For Monday: Read Ch 12 intro and 12.1-12.2.2 (pg 559-580).




