- Review of formulas
- Using a QP solver
- Training and using a classifier

Let ϕ be a feature space mapping and k be a kernel function, $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$.
General goal: Define a hyperplane $\mathbf{w}^{T} \phi(\mathbf{x})+w_{0}=0$ such that $y(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})+w_{0}$. classifies \mathbf{x}.
I have changed the intercept from b (as it appears in the book and appeared in the original version of the handout) to w_{0} so that it does not clash with b in the quadratic programming cannonical form below.
With constraint $\forall i \in[1, N], \quad t_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+w_{0}\right) \geq 1$, maximize the margin between the hyperplane and the closest point by finding

$$
\underset{\mathbf{w}, w_{0}}{\operatorname{argmax}}\left\{\frac{1}{\|\mathbf{w}\|} \min _{i}\left[t_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+w_{0}\right)\right]\right\}=\underset{\mathbf{w}, w_{0}}{\operatorname{argmax}}\left\{\frac{1}{\|\mathbf{w}\|}\right\}=\underset{\mathbf{w}, w_{0}}{\operatorname{argmin}}\left\{\frac{1}{2}\|\mathbf{w}\|\right\}=\underset{\mathbf{w}, w_{0}}{\operatorname{argmin}}\left\{\frac{1}{2} \mathbf{w}^{T} \mathbf{w}\right\}
$$

This quadratic programming problem has an equivalent Lagrangian function

$$
\mathcal{L}\left(\mathbf{w}, w_{0}, \mathbf{a}\right)=\frac{1}{2}\|\mathbf{w}\|-\sum_{i=1}^{N} a_{i}\left(t_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+w_{0}\right)\right)
$$

where \mathbf{a} is the vector of Lagrangian multipliers.
Let \mathbf{K} be the kernel matrix for data set $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{N}$:

$$
\mathbf{K}=\left(\begin{array}{cccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{1}}\right) & \cdots & k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{1}}\right) \\
k\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{2}}\right) & k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{2}}\right) & \cdots & k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{2}}\right) \\
\vdots & & & \vdots \\
k\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{N}}\right) & k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{N}}\right) & \cdots & k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{N}}\right)
\end{array}\right)
$$

The Lagrangian function has the dual representation

$$
\tilde{\mathcal{L}}(\mathbf{a})=\sum_{i=1}^{N} a_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} t_{i} t_{j} k\left(x_{i}, x_{j}\right)=\mathbf{i}^{T} \mathbf{a}-\frac{1}{2} \mathbf{a}^{T}\left(\mathrm{t} \mathrm{t}^{T}\right) \circ \mathbf{K} \mathbf{a}
$$

which we want to maximize subject to constraints $0 \leq a_{i}[\leq C], \forall i \in[1, N]$ and $\sum_{i=1}^{N} a_{i} t_{i}=0$. The targets \mathbf{t} make a column vector, and so $\mathbf{t t}^{T}$ is a square matrix of the same dimensionality as K. The o operator indicates the Hadamard product, which is entry-wise multiplication of two matrices with the same dimension. The result is a matrix containing the kernel results each multiplied by the product of the corresponding targets:

$$
\left.\mathbf{t t}^{T}\right) \circ \mathbf{K}=\left(\begin{array}{cccc}
t_{1} \cdot t_{1} \cdot k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & t_{2} \cdot t_{1} \cdot k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{1}\right) & \cdots & t_{N} \cdot t_{1} \cdot k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{1}\right) \\
t_{1} \cdot t_{2} \cdot k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{2}}\right) & t_{2} \cdot t_{2} \cdot k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{2}}\right) & \cdots & t_{N} \cdot t_{2} \cdot k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{2}}\right) \\
\vdots & & & \vdots \\
t_{1} \cdot t_{N} \cdot k\left(\mathbf{x}_{\mathbf{1}}, \mathbf{x}_{\mathbf{N}}\right) & t_{2} \cdot t_{N} \cdot k\left(\mathbf{x}_{\mathbf{2}}, \mathbf{x}_{\mathbf{N}}\right) & \cdots & t_{N} \cdot t_{N} \cdot k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{N}}\right)
\end{array}\right)
$$

A quadratic programming problem can be stated as, minimize $\frac{1}{2} \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}$ subject to $\mathbf{G x} \leq \mathbf{h}$ and $\mathbf{A x}=\mathbf{b}$.
In the original handout, \mathbf{b} above was b, a scalar, and we vacillated on whether it should be a vector or scalar. In the cannonical form for quadratic programming, it is a vector. Additionally, \mathbf{x} is an $n \times 1$ (column) vector, \mathbf{P} is an $n \times n$ symmetric matrix, \mathbf{G} is an $m \times n$ matrix, \mathbf{h} is a $m \times 1$ (column) vector, \mathbf{A} is a $\ell \times n$ matrix, and \mathbf{b} is a $\ell \times 1$ (column) vector.

To find a. Let $\mathbf{P}=\mathbf{t t}^{T} \mathbf{K}, q=\left(\begin{array}{c}-1 \\ -1 \\ \vdots \\ -1\end{array}\right), \mathbf{A}=\left(\begin{array}{llll}t_{1} & t_{2} & \cdots & t_{n}\end{array}\right)$, and $\mathbf{b}=(0)$.
Notice that in this problem, \mathbf{A} is a $1 \times n$ matrix, effectively a row vector, and \mathbf{b} is a 1×1 column vector, effectively a scalar. This was the source of ambiguity about whether b should be a vector or a scalar. It is a vector in the general problem, but a scalar (as a degenerate vector) in this specific problem. Thanks to Drew and Haley for tracking this down. Also notice that $\mathbf{t t}^{T}$ has a matrix result, but $\left(\mathbf{t t}{ }^{T}\right) \circ \mathbf{K}$ is is the Hadamard product.
For hard margin classification $\left(0 \leq a_{i}\right), \mathbf{G}=-\mathcal{I}=\left(\begin{array}{cccc}-1 & 0 & \ldots & 0 \\ 0 & -1 & \ldots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \ldots & -1\end{array}\right), \mathbf{h}=\mathbf{0}=\left(\begin{array}{c}0 \\ 0 \\ \vdots \\ 0\end{array}\right)$.
For soft margin classification $\left(0 \leq a_{i} \leq C\right), \mathbf{G}=\left(\begin{array}{cccc}1 & 0 & \ldots & 0 \\ 0 & 1 & \ldots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \vdots & 1 \\ -1 & 0 & \ldots & 0 \\ 0 & -1 & \ldots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \ldots & -1\end{array}\right), \mathbf{h}=\left(\begin{array}{c}C \\ C \\ \vdots \\ C \\ 0 \\ 0 \\ \vdots \\ 0\end{array}\right)$.
Support vectors are $\left\{\mathbf{x}_{i} \mid a_{i} \neq 0\right\}$. Weights are

$$
\mathbf{w}=\sum_{i=1}^{N} a_{i} t_{i} \mathbf{x}_{i}=\sum_{i=1 \mid a_{i} \neq 0} a_{i} t_{i} \mathbf{x}_{i}
$$

Intercept is

$$
w_{0}=\frac{1}{\left|\left\{a_{i} \mid a_{i} \neq 0\right\}\right|} \sum_{j=1 \mid a_{j} \neq 0}^{N}\left(t_{j}-\sum_{i=1 \mid a_{i} \neq 0}^{N} a_{i} t_{i} k\left(\mathrm{x}_{i}, \mathrm{x}_{j}\right)\right)
$$

To train a classifier for hard margin classification:

Given data, targets, and k,
Compute kernel matrix \mathbf{K}
Compute $\mathbf{P}=\mathbf{t t}^{T} \mathbf{K}$
Assemble \mathbf{q} vector of -1 s
Assemble \mathbf{A} matrix of t_{i} along the diagonal
Assemble \mathbf{G} matrix of -1 s along the diagonal
Assemble \mathbf{h} verctor of 0 s
Compute a vector by feeding $\mathbf{P}, \mathbf{q}, \mathbf{G}, \mathbf{h}, \mathbf{A}$, and $\mathbf{b}=\mathbf{0}$ into QP solver
Select support vectors from a that are not zero
Compute w_{0}
(For soft margin, modify \mathbf{G} and \mathbf{h}.)
To classify new data point \mathbf{x}, compute $\sum_{i=1 \mid a_{i} \neq 0}^{N} a_{i} t_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+w_{0}$

