
CSCI 394—ML SVM algorithm April 3, 2019

• Review of formulas

• Using a QP solver

• Training and using a classifier

Let φ be a feature space mapping and k be a kernel function, k(xi,xj) = φ(xi)
Tφ(xj).

General goal: Define a hyperplane wTφ(x) + w0 = 0 such that y(x) = wTφ(x) + w0. classifies x.

I have changed the intercept from b (as it appears in the book and appeared in the original version of the handout)
to w0 so that it does not clash with b in the quadratic programming cannonical form below.

With constraint ∀ i ∈ [1, N], ti
(
wTφ(xi) + w0

)
≥ 1, maximize the margin between the hyperplane and the closest

point by finding

argmax
w,w0

{
1

||w||
min
i

[
ti
(
wTφ(xi) + w0

)]}
= argmax

w,w0

{
1

||w||

}
= argmin

w,w0

{
1

2
||w||

}
= argmin

w,w0

{
1

2
wTw

}

This quadratic programming problem has an equivalent Lagrangian function

L(w, w0,a) =
1

2
||w|| −

N∑
i=1

ai
(
ti
(
wTφ(xi) + w0

))
where a is the vector of Lagrangian multipliers.

Let K be the kernel matrix for data set x1,x2, . . .xN :

K =

k(x1,x1) k(x2,x1) · · · k(xN,x1)
k(x1,x2) k(x2,x2) · · · k(xN,x2)

...
...

k(x1,xN) k(x2,xN) · · · k(xN,xN)

The Lagrangian function has the dual representation

L̃(a) =

N∑
i=1

ai −
1

2

N∑
i=1

N∑
j=1

aiajtitjk(xi, xj) = iTa− 1

2
aT (ttT) ◦Ka

which we want to maximize subject to constraints 0 ≤ ai[≤ C], ∀ i ∈ [1, N] and
∑N

i=1 aiti = 0. The targets t
make a column vector, and so ttT is a square matrix of the same dimensionality as K. The ◦ operator indicates
the Hadamard product, which is entry-wise multiplication of two matrices with the same dimension. The result is a
matrix containing the kernel results each multiplied by the product of the corresponding targets:

ttT) ◦K =

t1 · t1 · k(x1,x1) t2 · t1 · k(x2,x1) · · · tN · t1 · k(xN,x1)
t1 · t2 · k(x1,x2) t2 · t2 · k(x2,x2) · · · tN · t2 · k(xN,x2)

...
...

t1 · tN · k(x1,xN) t2 · tN · k(x2,xN) · · · tN · tN · k(xN,xN)

A quadratic programming problem can be stated as, minimize 1

2x
TPx + qTx subject to Gx ≤ h and Ax = b.

In the original handout, b above was b, a scalar, and we vacillated on whether it should be a vector or scalar. In
the cannonical form for quadratic programming, it is a vector. Additionally, x is an n× 1 (column) vector, P is an
n× n symmetric matrix, G is an m× n matrix, h is a m× 1 (column) vector, A is a `× n matrix, and b is a `× 1
(column) vector.

To find a. Let P = ttTK, q =

−1
−1
...
−1

, A =
(
t1 t2 · · · tn

)
, and b =

(
0
)
.

Notice that in this problem, A is a 1×n matrix, effectively a row vector, and b is a 1× 1 column vector, effectively a
scalar. This was the source of ambiguity about whether b should be a vector or a scalar. It is a vector in the general
problem, but a scalar (as a degenerate vector) in this specific problem. Thanks to Drew and Haley for tracking this
down. Also notice that ttT has a matrix result, but (ttT) ◦ K is is the Hadamard product.

For hard margin classification (0 ≤ ai), G = −I =

−1 0 . . . 0
0 −1 . . . 0
...

...
0 0 . . . −1

, h = 0 =

0
0
...
0

.

For soft margin classification (0 ≤ ai ≤ C), G =

1 0 . . . 0
0 1 . . . 0
...

...

0 0
... 1

−1 0 . . . 0
0 −1 . . . 0
...

...
0 0 . . . −1

, h =

C
C
...
C
0
0
...
0

.

Support vectors are {xi | ai 6= 0}. Weights are

w =

N∑
i=1

aitixi =
∑

i=1|ai 6=0

aitixi

Intercept is

w0 =
1

|{ai | ai 6= 0}|

N∑
j=1|aj 6=0

tj − N∑
i=1|ai 6=0

aitik(xi,xj)

To train a classifier for hard margin classification:

Given data, targets, and k,
Compute kernel matrix K
Compute P = ttTK
Assemble q vector of −1s
Assemble A matrix of ti along the diagonal
Assemble G matrix of −1s along the diagonal
Assemble h verctor of 0s
Compute a vector by feeding P, q, G, h, A, and b=0 into QP solver
Select support vectors from a that are not zero
Compute w0

(For soft margin, modify G and h.)

To classify new data point x, compute
∑N

i=1|ai 6=0 aitik(xi,x) + w0

Next time: Lab work time (Fri); principal component analysis (Mon)

For Monday: Read Ch 12 intro and 12.1-12.2.2 (pg 559–580).

