
I x or xi is a data point (with corresponding target t or ti in the training and test
sets). i ∈ [1,N] or i ∈ [0,N − 1) ranges over data.

I w is a weight vector. When disambiguation is needed, wk is the weight vector of
the kth perceptron.

I wj (or wkj) is the jth weight and xj (or xij) is the jth component in an input
vector. D is the dimensionality of the input and j ∈ [0,D] for weights, but
j ∈ [1,D] for input vectors (or x0 = 1).

I a(x) = w · x =
∑D

j=0 wjxj = w0 +
∑D

j=1 wjxj is an unthresholded perceptron,
linear unit, or activation (see Bishop pg 227).

I h is an activation function, which effectively provides a threshold for a perceptron.

I z(x) = h(a(x)) is a perceptron. (Bishop pg 227 calls this a hidden unit, which
makes sense in the context of a MLP).

I k ∈ [1,M] ranges over perceptrons in a hidden layer, hence zi , ak , and wk and wkj .

I η is the learning rate.



Perceptron rule
Initialize w to random values
Repeat until all training data points are correctly classified

For each data point xi, ti
Compute z(xi) = h(w · xi)
For each weight wj

wj+ = η(ti − z(xi))xij



Gradient descent
Initialize w to random values
Repeat until termination condition

For each ∆wj

∆wj = 0
For each data point xi, ti

Compute a(xi) = w · xi
For each ∆wj

∆wj+ = η(ti − a(xi))xij
For each weight wj

wj+ = ∆wj



Stochastic gradient descent (delta rule)
Initialize w to random values
Repeat until termination condition

For each data point xi, ti
Compute a(xi) = w · xi
For each weight wj

wj+ = η(ti − a(xi))xij



Backpropagation
Initialize all weights in all units to random value
Repeat until termination condition

For each data point xi, ti
Compute zk and y` for every unit in the network
For each output unit y`

δy` = y`(xi)(1− y`(xi))(ti − y`(xi))
For each hidden unit zk

δzk = zk(xi)(1− zk(xi))
∑K

`=1 w`kδ`
For each output unit y`

For each weight wy`j

wy`j = ηδy`xij
For each hidden unit zk

For each weight wzk j

wzk j = ηδzkxij


