Terms and concepts from last time:

- Observation, target
- Attribute, feature
- Regression, classification
- Supervised, unsupervised, reinforcement
- Model, model family, parameter, hyperparameter
- Error function, overfitting, loss function

Let S be a sample space. A probability function $P: \mathscr{P}(S) \rightarrow[0,1]$ fulfills the axioms of probability:

1. For all $X \in \mathscr{P}(S), P(X) \geq 0$.
2. $P(S)=1$
3. For disjoint sets $X, Y \in \mathscr{P}, P(X \cup Y)=P(X)+P(Y)$.

$$
P(\{\oslash J, \triangleright Q, \triangleright K, \diamond J, \ldots \& K\})=\frac{12}{52} \approx .23
$$

Consider the events

- A, the card is red. $P(A)=.5$
- B, the card is a diamond. $P(B)=.25$
- C, the card is a 4. $P(C) \approx .077$
- D, the card is $\diamond 4$. $P(D) \approx .019$

Theorem 1 (Bayes's theorem)
If X and Y are events, $P(X \mid Y)=\frac{P(Y \mid X) P(X)}{P(Y)}$.
Proof.

$$
\begin{aligned}
P(Y \mid X) & =\frac{P(X \cap Y)}{P(X)} \\
P(X \cap Y) & =P(Y \mid X) P(X) \\
P(X \mid Y) & =\frac{P(X \cap Y)}{P(Y)} \\
& =\frac{P(Y \mid X) P(X)}{P(Y)}
\end{aligned}
$$

A probability mass function of a random variable X is a function from values X can take on to the probability that X will take on that value. $p_{X}: \mathbb{R} \rightarrow[0,1]$.

$$
\begin{aligned}
p_{X}(x) & =P(X=x) \\
& =P\left(A_{x}\right) \\
& =\sum_{s \in S \mid X(s)=x} P(\{s\})
\end{aligned}
$$

