Define a hyperplane

$$
\mathbf{w}^{\top} \phi(\mathbf{x})+b=0
$$

such that

$$
y(\mathbf{x})=\mathbf{w}^{T} \phi(\mathbf{x})+b
$$

classifies \mathbf{x}.

The most important source for all of this today was Stephen Marsland, Machine Learning: An Algorithmic Perspective, 2015, pg 179-183. Notation adjusted to agree better with Bishop.

With constraint

$$
\forall i \in[1, N], \quad t_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right) \geq 1
$$

maximize the margin between the hyperplane and the closest point by finding

$$
\begin{aligned}
& \operatorname{argmax}_{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|} \min _{i}\left[t_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right)\right]\right\} \\
= & \operatorname{argmax}_{\mathbf{w}, b}\left\{\frac{1}{\|\mathbf{w}\|}\right\} \\
= & \operatorname{argmin}_{\mathbf{w}, b}\left\{\frac{1}{2}\|\mathbf{w}\|\right\} \\
= & \operatorname{argmin}_{\mathbf{w}, b}\left\{\frac{1}{2} \mathbf{w}^{T} \mathbf{w}\right\}
\end{aligned}
$$

This quadratic programming problem has an equivalent Lagrangian function

$$
\mathcal{L}(\mathbf{w}, b, \mathbf{a})=\frac{1}{2}\|\mathbf{w}\|-\sum_{i=1}^{N} a_{i}\left(t_{i}\left(\mathbf{w}^{T} \phi\left(\mathbf{x}_{i}\right)+b\right)\right)
$$

where \mathbf{a} is the vector of Lagrangian multipliers. This function has the dual representation

$$
\tilde{\mathcal{L}}(\mathbf{a})=\sum_{i=1}^{N} a_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} t_{i} t_{j} k\left(x_{i}, x_{j}\right)
$$

which we want to maximize subject to constraints

$$
\begin{array}{ll}
0 \leq a_{i}[\leq C] & \forall i \in[1, N] \\
\sum_{i=1}^{N} a_{i} t_{i}=0 &
\end{array}
$$

where $k\left(\mathbf{x}_{i}, \mathbf{x}_{j}\right)=\phi\left(\mathbf{x}_{i}\right)^{T} \phi\left(\mathbf{x}_{j}\right)$

Let \mathbf{K} be the kernel matrix for data set $\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots \mathbf{x}_{N}$:

$$
\mathbf{K}=\left(\begin{array}{cccc}
k\left(\mathbf{x}_{1}, \mathbf{x}_{1}\right) & k\left(\mathbf{x}_{2}, \mathbf{x}_{1}\right) & \cdots & k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{1}\right) \\
k\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) & k\left(\mathbf{x}_{2}, \mathbf{x}_{2}\right) & \cdots & k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{2}\right) \\
\vdots & & & \vdots \\
k\left(\mathbf{x}_{1}, \mathbf{x}_{\mathbf{N}}\right) & k\left(\mathbf{x}_{2}, \mathbf{x}_{\mathbf{N}}\right) & \cdots & k\left(\mathbf{x}_{\mathbf{N}}, \mathbf{x}_{\mathbf{N}}\right)
\end{array}\right)
$$

Then

$$
\tilde{\mathcal{L}}(\mathbf{a})=\sum_{i=1}^{N} a_{i}-\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} a_{i} a_{j} t_{i} t_{j} k\left(x_{i}, x_{j}\right)
$$

becomes

$$
\tilde{\mathcal{L}}(\mathbf{a})=\mathbf{i}^{T} \mathbf{a}-\frac{1}{2} \mathbf{a}^{T} \mathbf{t t}^{T} \mathbf{K} \mathbf{a}
$$

where \mathbf{i} is the identity vector.

A quadratic programming problem can be stated as, minimize

$$
\frac{1}{2} \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x}
$$

subject to

$$
\begin{aligned}
& \mathbf{G x} \leq \mathbf{h} \\
& \mathbf{A x}=b
\end{aligned}
$$

Quadratic programming problem:

$$
\begin{array}{ll}
\min \frac{1}{2} \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x} & \mathbf{G} \mathbf{x} \leq \mathbf{h} \\
\mathbf{A} \mathbf{x}=b
\end{array}
$$

Our problem:

$$
\begin{array}{rlrl}
\max & \mathbf{i}^{T} \mathbf{a}-\frac{1}{2} \mathbf{a}^{T} \mathbf{t t}^{T} \mathbf{K a} & 0 \leq a_{i} & {[\leq C]} \\
\sum_{i=1}^{N} a_{i} t_{i} & =0
\end{array}
$$

We want to find \mathbf{a}. Let $\mathbf{P}=\mathbf{t t}^{T} \mathbf{K}, q=\left(\begin{array}{c}-1 \\ -1 \\ \vdots \\ -1\end{array}\right), \mathbf{A}=\left(\begin{array}{cccc}t_{1} & 0 & \ldots & 0 \\ 0 & t_{2} & \ldots & 0 \\ \vdots & & & \vdots \\ 0 & 0 & \cdots & t_{n}\end{array}\right)$, and $b=0$.

Quadratic programming problem:

$$
\begin{array}{ll}
\min & \frac{1}{2} \mathbf{x}^{T} \mathbf{P} \mathbf{x}+\mathbf{q}^{T} \mathbf{x} \\
\mathbf{G x} \leq \mathbf{h} \\
\mathbf{A} \mathbf{x} & =b
\end{array}
$$

For hard margin classification $\left(0 \leq a_{i}\right)$,

$$
\begin{aligned}
& \mathbf{G}=-\mathcal{I}=\left(\begin{array}{cccc}
-1 & 0 & \ldots & 0 \\
0 & -1 & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & -1
\end{array}\right) \\
& \mathbf{h}=\mathbf{0}=\left(\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right)
\end{aligned}
$$

Quadratic programming problem:

$$
\begin{aligned}
& \mathbf{G x} \leq \mathbf{h} \\
& \mathbf{A x}=b
\end{aligned}
$$

For soft margin classification $\left(0 \leq a_{i} \leq C\right)$,

$$
\mathbf{G}=\left(\begin{array}{cccc}
1 & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \vdots & 1 \\
-1 & 0 & \ldots & 0 \\
0 & -1 & \ldots & 0 \\
\vdots & & & \vdots \\
0 & 0 & \ldots & -1
\end{array}\right) \quad \mathbf{h}=\left(\begin{array}{c}
C \\
C \\
\vdots \\
C \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Support vectors are $\left\{\mathbf{x}_{i} \mid a_{i} \neq 0\right\}$.
Weights are

$$
\mathbf{w}=\sum_{i=1}^{N} a_{i} t_{i} \mathbf{x}_{i}=\sum_{i=1 \mid a_{i} \neq 0} a_{i} t_{i} \mathbf{x}_{i}
$$

Intercept is

$$
b=\frac{1}{\left|\left\{a_{i} \mid a_{i} \neq 0\right\}\right|} \sum_{j=1 \mid a_{j} \neq 0}^{N}\left(t_{j}-\sum_{i=1 \mid a_{i} \neq 0}^{N} a_{i} t_{i} \mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)
$$

To train a classifier for hard margin classification:

Given data, targets, and k,
Compute kernel matrix \mathbf{K}
Compute $\mathbf{P}=\mathbf{t t}^{T} \mathbf{K}$
Assemble \mathbf{q} vector of -1 s
Assemble A matrix of t_{i} along the diagonal
Assemble \mathbf{G} matrix of -1 s along the diagonal
Assemble \mathbf{h} verctor of 0 s
Compute a vector by feeding $\mathbf{P}, \mathbf{q}, \mathbf{G}, \mathbf{h}, \mathbf{A}$, and $\mathbf{b}=\mathbf{0}$ into QP solver Select support vectors from a that are not zero
Compute b
(For soft margin, modify \mathbf{G} and \mathbf{h}.)
To classify new data point \mathbf{x}, compute $\sum_{i=1 \mid a_{i} \neq 0}^{N} a_{i} t_{i} k\left(\mathbf{x}_{i}, \mathbf{x}\right)+b$

