
Self Reference: Recursive Types

CSCI/MATH 243
Wheaton College

Thomas VanDrunen
Spring 2020

Reminder: Project prototype due Apr 13

Chapter 6 in context:

I Chapter 5 Relations: Builds on proofs about sets

I Chapter 6 Self Reference: Interlude between Chapters 5 and 7, focuses on
recursive thinking

I Chapter 7 Function: Builds on proofs about relations

Chapter 6 outline:

I Recursive definitions, recursive types (Apr 1)

I Recursive proofs I: Structural induction (Apr 3)

I Recursive proofs II: Mathematical induction (Apr 6)

I Math induction applied: Loop invariants (Apr 8 & 13)

Axiom 7
There exists a whole number 0.

Axiom 8
Every whole number n has a successor, succ n.

Axiom 9
No whole number has 0 as its successor.

Axiom 10
If a, b ∈W, then a = b iff succ a = succ b.

A whole number is either zero or one more than another whole number.

Compare to:
A list is either empty or an element together with its following list.

5 is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of

3, which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of

3, which is a whole number because it is the successor of
2, which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of

3, which is a whole number because it is the successor of
2, which is a whole number because it is the successor of

1, which is a whole number because

5 is a whole number because it is the successor of
4, which is a whole number because it is the successor of

3, which is a whole number because it is the successor of
2, which is a whole number because it is the successor of

1, which is a whole number because it is the successor of
0, which is a whole number by Axiom 7.

Lemmas for addition:

I 0 + b = b

I a + 0 = a

I a + b = (a + 1) + (b − 1)

Lemmas for subtraction:

I a− 0 = a

I a− b = (a− 1)− (b − 1)

Lemmas for multiplication:

I a · 0 = 0

I 0 · b = 0

I a · 1 = a

I a · b = a + (a · (b − 1))

Tree

root

node

link

parent

child

internal node

leaf

Full Binary Tree

1

2 6

1 8 2 7

3

5

Expression trees:

datatype operation = Plus | Minus | Mul | Div;

datatype expression = Internal of operation * expression * expression

| Leaf of int;

((5− 7) ∗ ((3 + 2)/8))

val exprExample = Internal(Mul, Internal(Minus,Leaf(5), Leaf(7)),

Internal(Div,

Internal(Plus, Leaf(3),

Leaf(2)),

Leaf(8)));

−

− /

*

+

3 2

85 7

