If $x, y \in \mathbb{Z}$, then $x \mid y$ (that is, x divides y) if there exists $z \in \mathbb{Z}$ such that $x \cdot z=y$. A relation R from a set X to a set Y is a set of ordered pairs from X and Y; it is a subset of $X \times Y$.

If R is a relation from a set X to a set Y, then the image of an element $x \in X$ under R is the set $\mathcal{I}_{R}(x)=\{y \in Y \mid(x, y) \in R\}$.
If R is a relation from a set X to a set Y, then the image of a set $A \subseteq X$ under R is the set $\mathcal{I}_{R}(A)=\{y \in Y|\exists a \in A|(a, y) \in R\}$.
If R is a relation from a set X to a set Y, then the inverse of R is the relation from Y to X defined by

$$
R^{-1}=\{(y, x) \in Y \times X \mid(x, y) \in R\}
$$

If R is a relation from a set X to a set Y and S is a relation from Y to a set Z, then the composition of R and S is the relation from X to Z defined by

$$
S \circ R=\{(x, z) \in X \times Z \mid \exists y \in Y \text { such that }(x, y) \in R \text { and }(y, z) \in S\}
$$

If R is a relation on a set X, then R is reflexive if $\forall x \in X,(x, x) \in R$.
If R is a relation on a set X, then R is symmetric if $\forall x, y \in X$, if $(x, y) \in R$ then $(y, x) \in R$.
If R is a relation on a set X, then R is transitive if $\forall x, y, z \in X$, if $(x, y) \in R$ and $(y, z) \in R$ then $(x, z) \in R$.

