
6, 0, 5, 1, 4, 2, 3 0, 3, 5, 2, 6, 1, 4 4, 2, 5, 3, 0, 1, 6
6

0

2

5

4

1

3

height 7
total depth 21
ANI 4

3

0

2

1

5

4 6

height 4
total depth 14
ANI 3 1

2

30

4

6

5

height 4
total depth 11
ANI 2.57

1, 6, 5, 2, 4, 3, 0 1, 2, 5, 4, 3, 0, 6 3, 1, 5, 0, 2, 4, 6

6

5

2

4

3

1

0

height 6
total depth 16
ANI 3.29

0 2

5

4 6

1

3

height 5
total depth 14
ANI 3

3

1

0 2 6

5

4 height 3
total depth 10
ANI 2.43



Map

BSTMap<K,V,I>
Node

<<interface>>

im
p
le

m
e
n
ts

RealNode
key:K

value: V

left, right: Node

info: I

<<interface>>

<<interface>>

recompute()

NodeInfo

putFixup(Node): Node

removeFixup(Node): Node

rooteFixup(Node)

newInfo(Node): I

<<interface>>

Balancer<K,V,I>

im
p
le

m
e
n
ts

balancer: Balancer

root: Node

im
p
le

m
e
n
ts

im
p
le

m
e
n
ts

RBInfoAVLInfo

TradRBBalancerAVLBalancer LLRBBalancer



(1)

[1]

(2)

(4)

[−1]

[0]

[0]

(1)

[0]

(1)

[0]

(1)

[0]

(1)

[1]

(2)

[1]

(3) (2)

[−1]

(3)

[1]

[1]

(5)

K

G R

C I P U

B E H J M Q S V

A F L O T

0 0

11

1

2

1 1

1

1 1

1 1

2

0

1 1

2

2

3

B

C

D

E G

H J

I K

L

M

N

O

P

QA

L

D P

B J

C H K

N

M O

Q

IG

E

A

2 7 8 91 3 4 5 11 12 13 1516 17 18

1914106

20 2122



(1)

[1]

(2)

(4)

[−1]

[0]

[0]

(1)

[0]

(1)

[0]

(1)

[0]

(1)

[1]

(2)

[1]

(3) (2)

[−1]

(3)

[1]

[1]

(5)



D

C E

C

A

B

F

G

H

FA

B

E

F

G

H

F

D

A

B

E

F

G

H

F

D

rotateinsert

[0]

[1]

[−1]

[1]

[1]

[2]

[−2]

[2]

[0]

[−1]

[1]



[0]

[−1]

[−1]

[0] [0]

[0]

[0]

[1]

[−1]

[2]

[0]

[−1]

[−1]

[1]

[−2]

E

F

G

J

H

A

B

C

J

K

L

I

A

B

C

D

E

F

G

J

K

L

I

A

B

C

D K

L

D

E

F

G

H

Irotate

wrong

insert



I

A

B

C

D

E

F

G

J

K

L

H

E

A

B

C

I

J

K

L

F

D G

H

E

A

B

C

D I

G

H
J

K

L

F

rotate rotate

[−1]

[−1]

[−1]

[2]

[1]
[−1]

[1]

[2]

[1]

[−1]

[0]

[0]



A

α

B

β

(h)

A

α β

B

rotate(h+2)

(h+3)

[−2]
[0 or 1]

γ

(h or h+1) (h+1)

[0 or −1]

right−right alone:

γ

(h or h+1)(h)

(h+1 or h+2)

[0 or −1]

(h+1)

(h+2 or h+3)



rotate

right−left alone:

A

C

B

α

β γ

δ

A

α

C

B

β

γ δ

[−2]

(h)

(h)

[1]

(h+3)

(h+2)

(h)

A C

α β γ

B

rotate

δ

(h or h−1) (h or h−1)

(h+1)

[−1 or 0 or 1] (h or h−1)

(h or h−1) (h)

[−1 or 0]

(h+1)

(h+2)

(h+3)

[−2]

[−1 or −2]

(h) (h)(h or h−1) (h or h−1)

[1 or 0]

(h+1) (h+1)

[−1 or 0]

(h+2)

[0]



[−1 or 0 or 1]

(h or h−1) (h or h−1)

A C

α β γ
δ

B

A

C

B

α

β γ

δ

A

α

C

B

β

γ δ

A

α

C

B

β

γ δ

[−2]

(h)

(h)

[1]

(h+3)

(h+2)

(h)

(h+3)
[−2]

[−2]

(h+3)

(h)

(h or h+1)

right−right:

right−left:

fall th
rough to

rotate

rotate

(h+1)

(h or h−1) (h)

[−1 or 0]

[−1 or −2]

(h or h−1)

(h+2)

(h+1)

(h or h−1) (h)

(h+1)

[−1 or 0]

(h+2)

[0 or −1 or −2]

[0 or 1]

(h+2 or h+3)

(h)

(h+1 or h+2)

[0 or −1]

(h or h−1)(h or h+1) (h)

(h+1)

[−1 or 0]



Invariant 25 (Postconditions of RealNode.put() with AVLBalancer.)
Let x be the root of a subtree on which put() is called and y be the node returned,
that is, the root of the resulting subtree. The subtree rooted at y has no violations and
the height of the subtree rooted at y is equal to or one greater than the original height
of the subtree rooted at x .

Proof. Suppose put() is called on node x in a BST using AVL balancing
which has no violations. There are three cases: x is nully, x is a RealNode

containing the key being searched for, or x is a RealNode with a different key.
We use structural induction with the first two cases as base cases.



Base case 1. Suppose x is nully, which has height 0 Then the node y
returned is a new RealNode with nully as both children, height 1, and balance
0. The subtree rooted at y has no violations and height one greater than the
original height of x .

Base case 2. Suppose x is a RealNode whose key is equal to the key used
for this put(). Then the value at node x is overwritten but node x itself is
returned (so y = x in this case) with the tree structure unchanged.

Inductive case. Suppose x is a RealNode and, without loss of generality, the
key used for this put() is greater than the key at x , and so put() is called on
the right child of x . Let h0 be the height of the tree rooted at x before this
call to put() on the right child, and let z the root of the subtree that results
from this call to put() on the right child. Our inductive hypothesis is that
the subtree rooted at z has no violations and that its height is equal to or one
greater than the height of the original right child of x .



Let h1 be the height of the tree rooted at x after the call to put() on the
right child but before the call to putFixup() with x .

Since since at most the height of its right subtree has increased by one, either
h1 = h0 or h1 = h0 + 1. By supposition, the balance of x before the call
to put() was no less than −1, since we supposed the tree had no violations.
Since at most the height of its right subtree has increased by one, the balance
of x is now no less than −2. We now have two subcases: Either the balance
of x is greater than −2 or it is equal to −2.

Suppose the balance of x is greater than −2. Then the call to putFixup()

with x returns x unchanged, which is also returned as the result of put()

(again y = x), a tree with no violations and height h1.

On the other hand, suppose the balance of x is equal to −2. Then y is a node
other than x returned by putFixup(). Let h2 be the height of the subtree
rooted at y when putFixup() returns. By inspection of the right-right and
right-left subcases given above, the subtree rooted at y has no violations and
either h2 = h1 or h2 = h1− 1. In either of those cases h2 = h0 or h2 = h0+1.
�



A1 A2 A3

A4 A5 Ah

Ah−2 Ah−1



Bh =


1 if h = 1

2 if h = 2

Bh−2 + Bh−1 + 1 otherwise

Bh+1 =


2 if h = 1

3 if h = 2

(Bh−2 + 1) + (Bh−1 + 1) otherwise

h 1 2 3 4 5 6

Bh + 1 2 3 5 8 13 21
Bh 1 2 4 7 12 20



Bh + 1 > φh+2
√
5
− 1

Bh + 2 > φh+2
√
5

√
5(Bh + 2) > φh+2

h + 2 < logφ(
√
5Bh)

h < logφ(
√
5Bh)− 2

= logφ Bh + logφ
√
5− 2

= 1
lg φ lgBh + logφ

√
5− 2


