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Invariant 25 (Postconditions of RealNode.put() with AVLBalancer.)
Let x be the root of a subtree on which put() is called and y be the node returned,
that is, the root of the resulting subtree. The subtree rooted at y has no violations and
the height of the subtree rooted at y is equal to or one greater than the original height
of the subtree rooted at x .

Proof. Suppose put() is called on node x in a BST using AVL balancing
which has no violations. There are three cases: x is nully, x is a RealNode

containing the key being searched for, or x is a RealNode with a different key.
We use structural induction with the first two cases as base cases.



Base case 1. Suppose x is nully, which has height 0 Then the node y
returned is a new RealNode with nully as both children, height 1, and balance
0. The subtree rooted at y has no violations and height one greater than the
original height of x .

Base case 2. Suppose x is a RealNode whose key is equal to the key used
for this put(). Then the value at node x is overwritten but node x itself is
returned (so y = x in this case) with the tree structure unchanged.

Inductive case. Suppose x is a RealNode and, without loss of generality, the
key used for this put() is greater than the key at x , and so put() is called on
the right child of x . Let h0 be the height of the tree rooted at x before this
call to put() on the right child, and let z the root of the subtree that results
from this call to put() on the right child. Our inductive hypothesis is that
the subtree rooted at z has no violations and that its height is equal to or one
greater than the height of the original right child of x .



Let h1 be the height of the tree rooted at x after the call to put() on the
right child but before the call to putFixup() with x .

Since since at most the height of its right subtree has increased by one, either
h1 = h0 or h1 = h0 + 1. By supposition, the balance of x before the call
to put() was no less than −1, since we supposed the tree had no violations.
Since at most the height of its right subtree has increased by one, the balance
of x is now no less than −2. We now have two subcases: Either the balance
of x is greater than −2 or it is equal to −2.

Suppose the balance of x is greater than −2. Then the call to putFixup()

with x returns x unchanged, which is also returned as the result of put()

(again y = x), a tree with no violations and height h1.

On the other hand, suppose the balance of x is equal to −2. Then y is a node
other than x returned by putFixup(). Let h2 be the height of the subtree
rooted at y when putFixup() returns. By inspection of the right-right and
right-left subcases given above, the subtree rooted at y has no violations and
either h2 = h1 or h2 = h1− 1. In either of those cases h2 = h0 or h2 = h0+1.
�
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Bh =


1 if h = 1

2 if h = 2

Bh−2 + Bh−1 + 1 otherwise

Bh+1 =


2 if h = 1

3 if h = 2

(Bh−2 + 1) + (Bh−1 + 1) otherwise

h 1 2 3 4 5 6

Bh + 1 2 3 5 8 13 21
Bh 1 2 4 7 12 20
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