
Suppose we were to write a class implementing a set of integers using a sorted array, that is

public class SortedIntSet implements Set<Integer> {

// invariant: The range [0, size) in internal is filled and sorted

private int[] internal;

private int size;

public SortedInSet() {

internal = new int[100];

size = 0;

}

// allocate new internal with double size

private int grow() { ... } // allocate new internal with double size

....

}

For each of the following methods required by the Set interface, determine the worst case running time
of the best implementation that maintains the invariant indicated in the comments. Cite the running
times as big-Oh categories in terms of n, the number of items in the set at the time the method is
called.
1. add(Integer item)

2. contains(Integer item)

3. remove(Integer item)

4. size()

5. isEmpty()

Minimum Spanning Tree Problem Single-Source Shortest Paths Problem

Given a weighted, undirected graph,
find the tree with least-total weight that
connects all the vertices, if one exists.

Given a weighted directed graph and a
source vertex, find the tree comprising the
shortest paths from that source to all other
reachable vertices.

I Both are defined for weighted graphs

I Both produce trees as a result

I Both minmize by weight

I For each we have two algorithms

Input is only a graph Input is a graph and a starting point
Problem usually is described on an undi-
rected graph

Problem usually is described on a directed
graph

Goal is to minimize total weight Goal is to minimize weight on each path
There is no clear winner between the
algorithms

One algorithm is clearly more efficient

0

1 2

3 4

5
6

7
8

9

10

11

12

5

15
6

6

3 1
5

13

89

12

8

3 6

2

6

5

1

9

2

4
9

0

1

2

3

1

1

1

4

1

10

9

8

