Computer Science 345
Practice problems for test 1

Consider this implementation of the size () method for a bit vector implementation
of an NSet:

public class BitVecNSet implements NSet {
private byte[] internal; /** The array of bytes, used as a bit vector. */
private int range; /** One greater than the largest number than can be stored. */

public int size() {
int count = 0;
for (int i = 0; i < internal.length - 1; i++) { // first, outer loop
byte current = internall[il;
for (int j = 0; j < 8; j++) { // second, inner loop
count += current & 1;
current >>= 1;
}
}
byte current = internall[internal.length - 1];
for (int j = 0; j < range % 8; j++) { // third loop
count += current & 1;
current >>= 1;
}

return count;

Let N be the size of the universe the set is drawn from (note range = N) and let
A be the conceptual set.

1. Write a loop invariant for the first, outer for loop that explains what count is
and relates it to i, internal, and/or the conceptual set.

2. Write a loop invariant for the inner for loop that explains current and relates
current to count, i, j, internal, and/or the conceptual set.

(You are not asked to do anything with the third loop)

3. Consider this implementation of the decreaseKeyAt() method for the imple-
mentation of a heap:

public class IntHeap {

J*%*
* The array contatining the internal data of the heap.
*/

private int intermall];

protected void decreaseKeyAt(int i) {

int 1lIndex = left(i);
int rIndex = right(i);
while (1Index < heapSize &&
(internal[i] < internal[lIndex]) ||
(rIndex < heapSize &&
internal[i] < internal[rIndex])) {
int greatestIndex = internal[i] < internal[lIndex] 7
1Index : 1i;
greatestIndex =
rIndex < heapSize &% internal[greatestIndex] < internal[rIndex] 7
rIndex : greatestIndex;
int temp = internall[i];
internal[i] = internal[greatestIndex];
internal [greatestIndex] = temp;
i = greatestIndex;
1Index = left(i);
rIndex = right(i);

Write a precondition for this method and an invariant for the loop that explains
how the variable i is used, specifically what assumptions are made and maintained
about the heap in relation to index 1i.

4. What is the running time of counting sort (as a big-Oh category) on an array of
size n with values in the range [0,m) for some whole number m?

5. What is an abstract data type? Specifically, what makes it abstract?

6. How do lists and stacks differ? How do sets and maps differ? For any two distinct
ADTs x and y that we have defined, how to = and y differ? How do they all differ
from the data structures we have studied?

7. If you needed to write a quick implementation of set and had implementations of
list, map, and bag at your disposal, which would you use, and what would be the key
insight of your strategy? (Recommended: Write out the code for an implementation
of (Whatever)Set, and be able to articulate why you chose whatever and how you're
using it.)

8. Give one advantage each for array-based implementations and linked implemen-
tations, in comparison with each other.

9. Explain a circumstance in which an adjacency-matrix implementation has some
advantages over adjacency-list.

10. Suppose we have the following interface for graphs, where vertices are identified
by number:

public interface Graph {
int numVertices();
// return the wvertices adjacent to v
Iterable<Integer> adjacents(int v);

Suppose further you have a class that implements the Graph interface above as a
directed graph, with the following public signatures:

public class DirectedGraph implements Graph {
public DirectedGraph(int numVertices);
public int numVertices();
public Iterable<Integer> adjacents(int v);
// add an edge from u to v
public void addEdge(int u, int v);

Note that the constructor takes only the number of vertices; edges are added later
using the addEdge () method.

Write a class that implements the Graph interface above as an undirected graph,
reusing the class DirectedGraph. Like DirectedGraph, your class should have a
constructor that takes only the number of vertices and a method void addEdge(int
u, int v).

11. Suppose we have the following interface for graphs, where vertices are identified
by number:

public interface Graph {
int numVertices();
// return the wvertices adjacent to v
Iterable<Integer> adjacents(int v);

One can iterate over all edges of graph g with the following nested loops:

for (int u = 0; u < g.numVertices; u++)
for (int v : g.adjacents(u))
// do something with edge (u, v)

Assume the body of the inner loop is constant.

a. What is the running time for this code as a big-oh category in terms of V and E
if g is implemented using adjacency lists?

b. What is the running time for this code as a big-oh category in terms of V and E
if g is implemented using an adjacency matrix?

12. In the following graph, highlight the edges that form a minimum spanning tree
and label them to indicate an order in which they would be added to the tree using
Kruskal’s algorithm.

7 24

4 29

o7 15
11 6

13. Using the same graph as before, highlight the edges that form a minimum
spanning tree and label them to indicate an order in which they would be added to
the tree using Prim’s algorithm.

7 24

29

o7 15
11 6

14. Explain how Dijkstra’s algorithm finds an SSSP tree in one round of relaxations.

public interface List<E> {
E get(int index);
int size();

public class ArrayList implements List<String> {
private String[] internal;

public ArrayList(String[] items) {
internal = new String[items.length];
for (int i = 0; i < items.length; i++)
internal[i] = items[i];

}

public String get(int index) {
return internal[index];

}

public int size() { return internal.length; }

public class LinkedList implements List<String> {

private class Node{
String datum;
Node next;
public Node(String datum, Node next) {
this.datum = datum;
this.next = next;

Node head;

public LinkedList(String[] items) {
head = null;
for (int i = items.length - 1; i >= 0; i--)
head = new Node(items[i], head);

}

public String get(int index) {
Node current = head;
for (int i = 0; i < index; i++) current = current.next
return current.datum;

}

public int size() {
int count = O;
for (Node current = head; current != null; current =
count++;
return count;

>

current.next)

