
CSCI
345

Data Structures and Algorithms

Spring 2021 MFW 11:35am–12:45pm MEY 061

http://cs.wheaton.edu/~tvandrun/cs345

Thomas VanDrunen
T630-752-5692 H630-639-2255 BThomas.VanDrunen@wheaton.edu

Office: MEY 163 Office hours: By appointment through Calendly

Contents

CATALOG DESCRIPTION. Formal and experimental approaches to verifying algorithms’ correct-
ness and analyzing their efficiency. Abstract data types and their implementations. Efficient im-
plementations of maps using balanced binary search trees and hash tables. Graph algorithms.
Dynamic programming. Prerequisites: CSCI 243 and CSCI 245.

TEXTBOOK.
Thomas VanDrunen, Algorithmic Commonplaces, 2020. Under contract with Franklin, Beedle
and Associates. Preprint available at the Wheaton College bookstore.

PURPOSE OF THE COURSE. This course is a central part of the computer science major. This
is the place where students solidify their understanding of algorithmic problem-solving, data
abstraction, and the trade-offs of data structuring strategies. Moreover, students add knowledge
of crucial algorithmic techniques and data structures to their toolkit. Specifically, there are six
big ideas. The first three are pursued throughout the course, the last three refer to specific units.

1. The correctness of an algorithm can be verified formally using loop invariants and other
proof techniques and empirically using unit tests.

2. The efficiency of an algorithm can be measured formally using algorithmic analysis, big-oh
categories, etc, and empirically by running experiments.

3. Abstract data types, especially list, stack, queue, set, bag, and map, are specified by how
they are used; data structures, such as arrays, linked lists, binary trees, and hash tables,
are implementation strategies, each with trade-offs.

4. Searching in an unordered data structure such as a map can be done in logarithmic time
using a balanced binary search tree .

5. Searching in an unordered data structure can be done in constant time using a hash table.

6. Problems with overlapping subproblems and optimal substructure can be solved efficiently
using dynamic programming.

1



COURSE OUTLINE. (For a schedule, see the course website.)

I. Prolegomena

Studying data structures and algorithms requires clear expression of the basic principles. When study-
ing algorithms, we have two dimensions. For a given algorithm, we want to determine whether it is
correct or not and how efficient it is; both of these things can be studied both formally and empirically.
For that end we consider formal techniques for reasoning about what an algorithm does and categoriz-
ing its running time. We also identify basic algorithms that are used as elements in more complicated
algorithms, which builds our intuition for determining an algorithm’s complexity.
Moreover, we need a clear distinction between abstract data types (ADTs), which specify how a con-
tainer or other composite type presents itself to the rest of the system, and data structures, which are
strategies for implementing ADTs. We define a set of standard (“canonical”) ADTs, as well as identify
the basic data structures that are used as elements in more complicated data structures.

A. Algorithms and correctness

B. Algorithms and efficiency

C. Abstract data types

D. Data structures

II. Case studies

Before hitting the meat of the course, we explore a few extended examples. Each of these serves to to
reinforce and illuminate the principles laid out in the previous unit. Moreover, each is used as elements
in certain later topics.

A. Linear sorting

B. Disjoint sets and union/find

C. Heaps and priority queues

D. Bit vectors

III. Graphs

The graph, as a mathematical abstraction, is one of the most important tools for representing the
structure of information and relationships within information, used in one form or another by many
fields. Accordingly, efficient ways to store and process graphs are a crucial piece of the study of data
structures and algorithms.
This exploration of standard graph algorithms is both an exercise in applying the principles of the
course and a primer in algorithmic elements whose variations can be applied to many specialized
applications.

A. Graph concepts and implementation

B. Basic traversal algorithms: Depth-first and breath-first

C. Minimum spanning trees

D. Shortest paths

IV. Trees

In this chapter we embark on a task that stays with us for the rest of the course: Developing efficient
data structures for implementing unordered collections, such as the map ADT. The naı̈ve implemen-
tations have linear-time operations. This chapter considers one family of solutions: the binary search
tree abstraction and various tree data structures that afford map implementations with logarithmic-
time operations.
Specifically we consider several strategies for self-balancing binary search trees and compare their
performance and other practical aspects.

A. Binary search trees

B. Balanced binary search trees

1. AVL trees
2. Red-black trees

2



3. Left-leaning red-black trees
4. 2-3 trees
5. B-trees

V. Dynamic programming

Dynamic programming is a technique that uses tables to store intermediate results of recursive algo-
rithms for certain optimization problems with overlapping subproblems.
Our exploration is organized around an introduction of several problems suited to dynamic program-
ming solutions, the explanation of the principles of dynamic programming, the application of those
principles to the given problems, and, finally, the working out of a larger dynamic programming solu-
tion to a more complicated problem.
That more complicated problem is a continuation of our quest for improved implementation of the map
ADT: constructing a binary search tree not to achieve balance but optimality based on the look-up
probabilities of the keys.

A. Three problems

B. Principles of dynamic programming

C. Three dynamic programming solutions

D. Optimal binary search trees

VI. Hashing

Having achieved logarithmic-time operations for a map using a binary search tree, we pursue the quest
further with hash tables, a family of data structures that support constant-time map operations. We
consider several specific approaches and compare their real performance.

A. Hashing general concepts

B. Separate chaining

C. Open addressing with linear probing

D. Hash functions

E. Perfect hashing

VII. String processing

A lot of data used in modern applications is textual data. String processing plays a crucial role in many
of the common uses of computation today. This includes considering a data structure for efficient map
operations assuming string keys.

A. Sorting strings

B. Tries

C. Regular expressions

LEARNING OUTCOMES. Corresponding to the six big ideas of the course listed earlier, this course’s
aim is that at the end of the semester, students are able to

1. State and demonstrate a loop invariant for an algorithm.

2. Determine the performance of an algorithm and identify a big-oh or big-theta category.

3. Differentiate between ADTs and data structures and articulate the trade-offs among data structures
studied in class.

4. Articulate the factors in implementing a binary search tree and how they affect the performance of a
BST implementation of a map.

5. Articulate the factors in implementing a hashtable and how they affect the performance of a hashtable
implementation of a map.

6. Articulate the attributes of a problem that is suited for a dynamic programming solution and imple-
ment a given dynamic programming algorithm.

In addition to these, together we have the general objective of seeing algorithm design and imple-
mentation as a creative expression for God’s glory and observing algorithmic solutions as part of
God’s creation.

3



Course procedures

HOW WE DO THIS COURSE. The rhythm of this course consists in students reading about new
ideas in the text; the ideas being discussed and practiced in class; and students working out
the details of the ideas in projects. Most of students’ work for this course is in projects in which
they will implement the things we discuss in class. Students’ self-directed study is enforced
through practice problems and quizzes. On tests, students apply the things we have learned to
new problems.

The course is organized into units (corresponding to chapters in the book, except that the first
two chapters make one unit), with units divided into modules. Each module corresponds to
between one and three days in class. Folders for units and modules can be found on Schoology.

Each module has a reading associated with it. In some cases the reading should be done before
the material is presented in class, but for most modules the student can choose whether to do
the reading before or after class, depending on how that student learns best. The reading is
important as the “full version” of the information that is only highlighted in class. Most modules
also have practice problems, a quiz, and a project.

Periodically there will be videos that accompany certain modules. In some cases these are re-
quired videos, especially when class time isn’t enough. In other cases the videos are discretionary
for students who find them useful.

QUIZZES. Quizzes are administered through Schoology, and students can take them when con-
venient before the indicated due date. These quizzes mainly enforce the reading and practice
problems.

PROJECTS. As stated above, projects are where students will do most of their work and, pre-
sumably, most of their learning. To a certain extent, students may work on projects at their
own pace. The due dates found on Schoology indicate when a student should be done with the
individual projects in order to keep up with the course, but no penalty is given for projects later
than the posted due date. All projects must be turned in by the last day of classes, April 30.
(Official deadline is midnight between April 30 and May 1. Enforced deadline is when I wake up
in the morning on May 1.) Projects are graded for correctness, verified by unit tests (and inspec-
tion for general conformity to the intent of the project). Students are supplied all unit tests used
in grading (except that the right is reserved to modify the data used in the unit tests to make
sure the code hasn’t been hardwired to pass unit tests with specific data). See the Policies etc
section of this syllabus for other details. Other information about projects, including practical
suggestions, can be found on the course website.

TESTS. There are four tests, currently scheduled as Test 1 on Wed, Mar 3, Test 2 on Wed, Apr 7;
and Tests 3 and 4 on Thurs, May 6 Tues, May 4 (at 1:30 pm 10:30am, this course’s final exam
block). Note that Tests 3 and 4 together constitute the final exam for this course, but are treated
separately for the purposes of this syllabus. In a normal semester, the tests specifically would
be,

• Test 1 is on paper and has conceptual problems from the first third of the course (prolegom-
ena, case studies, and graphs).

• Test 2 is at a computer and has programming problems from the first half of the course
(prolegomena, case studies, graphs, and trees).

• Test 3 is on paper and has conceptual problems from the last two-thirds of the course (trees,
dynamic programming, hash tables, and strings).

• Test 4 is at a computer and has programming problems from the second half of the course
(dynamic programming, hash tables, and strings).

In light of the unusual circumstances Spring 2021, the precise details of how the tests are to be
administered are yet to be determined.

4



GRADING. In order to pass the course (that is, to receive a D grade or better), a student must (a)
achieve a minimum score of 75% on the projects and (b) achieve an average score of at least 50%
on the tests.

(Note that students are given all the test cases used in grading and may resubmit projects
throughout the semester. There is no reason for a student who takes the course seriously and
acquires basic competency not to get 100% on projects.)

For students who have met the minimum requirements, their semester score is calculated as the
weighted average of the following scores (each as a percentage):

instrument weight
Projects 30
Tests 60 (4 @ 15 each)
Other 10

. . . where Other comprises short assignments, in-class activities, readings, quizzes, code style,
etc. Some of these may be graded for correctness, others may be marked as done or not. Also,
students may get extra credit points applied to the “other” category for each mistake in the book
they are the first to discover, at the instructor’s discretion.

I use the “Gradebook” feature on Schoology only to communicate scores on individual assign-
ments and tests. I do not use the Schoology gradebook for my official record-keeping for scores,
for calculating semester scores, or determining letter grades. Please ignore any grade estimate
that Schoology gives you for this course.

Policies etc

ACADEMIC INTEGRITY. Collaboration among students in the class is permitted on projects and
most assignments. Using code for projects from any outside resources (print, electronic, or
human) is not permitted. Using ideas from outside resources in projects is not recommended,
but if a student does get use any outside resources for concepts used in projects, they must
be cited using the same standards as would be used in a research paper. If you relied on an
outside resource in any way for any project, submit a file with your project named CITATIONS
giving citations for the resources and an explanation of how and why you used them. On any
assignment given from the textbook, no resources that specifically serve as solutions to exercises
from the textbook may be used.

As much as possible, the projects are designed to minimize the opportunity for students to fool
the automated grading, that is, to submit solutions that happen to pass the tests but fail to
implement the intended approach to the problem. Students, however, are expected to abide by
the intent of the projects and shall not submit solutions that “cheat” the unit tests if they discover
a way to do so.

A project or assignment on which a student violates these policies will be rejected without op-
tion to resubmit. Repeated offenses will be handled through the college’s official disciplinary
procedures.

LATE ASSIGNMENTS. Projects have no due date except that all projects must be turned in by the
last day of classes. No credit will be given for late work.

PROJECT GRADING. My intention is to grade projects solely on correctness as demonstrated
by unit tests, but I reserve the right to inspect code for conformance to specifications that are
not easily verified automatically. You will be given all the unit tests used in grading, except
that the raw data used by the unit tests during grading may be different from that provided to
students, to prevent students from simply writing code that apes the responses the specific unit
tests check for. Extra credit shall be given to students who discover cases not covered by the
given unit tests; in that case, the student must write a JUnit test case and provide a would-be
solution to the project that passes the current set of unit tests but fails the new one. Bonus
extra credit shall be awarded if the instructor’s own solution fails the new test. Moreover, and
this is important, that new test case shall be distributed to the class and added to the test cases

5



used in grading. Any student who has already submitted a solution that does not pass the new
test case should resubmit a corrected solution.

CODE STYLE. To encourage students to practice good programming style, the instructor reserves
the right to assess submitted project code for style and efficiency, to be incorporated into the
Other score.

TESTS USING COMPUTERS. [The following indicates procedures used in a normal semester. Precise
implementation for Spring 2021 is yet to be determined.] For Tests 2 and 4, the computer science
lab (Meyer 154) shall be reserved for our use. The lab machines shall be logged into special
accounts for the purpose of test-taking. Internet access shall be turned off. Students shall use
only Eclipse and a web browser; the browser shall be used only to view a local copy of the Java
API. Students shall be given a few JUnit tests to clarify the problem but not the JUnit tests to be
used in grading.

ATTENDANCE. Students are expected to attend all class periods, in person whenever possible.
It is courtesy to inform the instructor when a class must be missed or when you must attend
virtually.

EXAMINATIONS. Students are expected to take all tests, quizzes, and exams as scheduled. In
the case where a test must be missed because of legitimate travel or other activities, a student
should notify the instructor no later than one week ahead of time and request an alternate time
to take the test. In the case of illness or other emergencies preventing a student from taking a test
as scheduled, the student should notify the instructor as soon as possible, and the instructor
will make a reasonable accommodation for the student. The instructor is under no obligation to
give any credit to students for tests to which they fail to show up without prior arrangement or
notification in non-emergency situations. The final exam block, when Tests 3 and 4 are held, is
Thursday, May 6, at 1:30 pm Tuesday, May 4, at 10:30 am. I do not allow students to take finals
early (which is also the college’s policy), so make appropriate travel arrangements.

GENDER-INCLUSIVE LANGUAGE. The college requires the following statement to be included on
all syllabi: For academic discourse, spoken and written, the faculty expects students to use gender
inclusive language for human beings.

EXTENDED TIME TO COMPLETE THE COURSE. I am commited to making special arrangements for
students with extended illness or similar emergency situations.

CONFIDENTIALITY AND MANDATORY REPORTING. I’m committed to help maintain a safe learning
environment on campus. As a faculty member I am required to share with College authorities
any information about sexual misconduct that may have occurred on Wheaton College’s cam-
pus. Confidential resources available to students include Confidential Advisors, the Counseling
Center, Student Health Services, and the Chaplain’s Office. More information on these resources
and the college’s policies is available at www.wheaton.edu/sexualassaltresponse.

SPECIAL NEEDS. Institutional statement: Wheaton College is committed to providing reason-
able accommodations for students with disabilities. Any student with a documented disability
needing academic adjustments is requested to contact the Academic and Disability Services
Office as early in the semester as possible. Please call 630.752.5941 or send an e-mail to
jennifer.nicodem@wheaton.edu for further information.

My own statement: If you have a documented need for accommodations, I will have received
a letter on your behalf from the Disability Services Office. But please talk to me about what
accommodations are most useful to you. In particular, if you desire accommodations for test-
taking, talk to me a reasonable amount time in advance (say, at least two class periods) so
arrangements can be made.

FACE COVERINGS. In accordance with the Wheaton College Face Covering Policy and COVID-
Safe, Thunder-Strong Commitment, signed by each student and faculty member, CDC-approved
face coverings and social distancing are required while attending class. Failure to comply with
wearing a face covering or social distancing will result in dismissal from the class session and an
unexcused absence. Multiple violations can lead to dismissal from the class.

6



OFFICE HOURS. Please schedule office hours through Calendly. I am trying to make myself
available as much of the time as possible, but times may vary from week to week. Normal office
hour times are almost-all-day Tuesday and Thursday and 8:30-10pm Monday through Thursday.
I am not normally available during the day Monday, Wednesday, and Friday.

ELECTRONIC DEVICES. Under normal circumstances my intent is for my courses to be electroinic-
device-free zones. But these aren’t normal circumstances. So instead I ask of you, whether you
are joining class in-person or remotely, please do not use your laptop, table, phone, etc, for any-
thing other than class activities. “Class activities” means looking at an electronic version of the
textbook, looking at your solutions to daily work, taking notes, and using Zoom (if joining class
remotely). Please refrain from from all other uses of electronic devices. In particular, NO TEX-
TING OR USING SOCIAL MEDIA DURING CLASS MEETINGS.

All this, the Lord willing.

7


