Chapter 1 outline:

- Introduction, sets and elements (this past Monday)
- Set operations; visual verification of set propositions (this past Wednesday)
- Introduction to SML; cardinality and Cartesian products (Today)
- Making types and functions in SML (next week Wednesday)
- More about functions in SML; introduction to lists [Chapter 2] (next week Friday)

Today (full agenda):

- [Programming] Introduction to the SML interpreter
- [Programming] Basic programming terminology
- [Programming] Types
- [Sets] Cardinality, disjointedness, partitions
- [Sets and Programming] Tuples and Cartesian products
- [Programming] Type analysis ("afterclass" video)

Which are valid ML types?

int	double
char	val
string	real
int * int	int * char

Compute the cardinality:
$|\{1,2,3,4,5\} \cup\{3,4,5,6\}|$

$$
|[0, \pi) \cap \mathbb{Z}|
$$

|FacultyInThisRoom - StudentsInThisRoom|

Which are disjoint?
\mathbb{Z} and \mathbb{R}
\mathbb{Z} and \mathbb{R}^{-}
$[0,5)$ and $[5,10)$
Plants and Fungi
MathClasses and CSCIClasses
DeciduousTrees and ConiferousTrees
1.8.1 What is the cardinality of $\{0,1,2, \ldots n\}$?
1.8.3 One might be tempted to think $|A \cup B|=|A|+|B|$, but this is not true in general. Why not? (Assume A and B are finite.)
1.8.6 Describe three distinct partitions of the set \mathbb{Z}.
1.9.5 Based on our description of the real number plane as a Cartesian product, explain how a line can be interpreted as a set.
1.9.6 Explain how \mathbb{C}, the set of complex numbers, can be thought of as a Cartesian product.
1.9.7 Any rational number (an element of set \mathbb{Q}) has two integers as components. Why not rewrite fractions as ordered pairs (for example, $\frac{1}{2}$ as $(1,2)$ and $\frac{3}{4}$ as $(3,4)$) and claim that \mathbb{Q} can be thought of as $\mathbb{Z} \times \mathbb{Z}$? Explain why these two sets cannot be thought of as two different ways to write the same set. (There are at least two reasons.)
\#1 $(5,4)+\operatorname{int}(4.0 / 3.1)$
(5 + 7, String.sub("hello", 2))

$$
(((1,2), 5.7,(\# " A ", \# " x ")), 8, \text { "bye") }
$$

For next time:

Watch "afterclass" video about type analysis (pandemic-era)
Pg 26: 1.6.(1-5)
Pg 32: 1.8.(2, 4, 5)
Pg 36: 1.9.(3, 4, 8, 9, 10)
Note that the ML problems should be submitted on paper with the rest of the assignment. Submission to the automated grader starts with the assignment due Jan 24.

Skim 1.(10 \& 11)

