Chapter 7 outline:

- ▶ Introduction, function equality, and anonymous functions (last week Monday)
- ► Image and inverse images (last week Wednesday)
- ► Function properties, composition, and applications to programming (last week Friday)
- Cardinality (Monday)
- Practice quiz and Countability (Today)
- Review (Monday, Apr 18)
- ► Test 3, on Ch 6 & 7 (Wednesday, Apr 20)

Two finite sets X and Y have the *the same cardinality* as each other if there exists a one-to-one correspondence from X to Y.

To use this *analytically*:

Suppose X and Y have the same cardinality. Then let f be a one-to-one correspondence from X to Y.

f is both onto and one-to-one.

To use this synthetically:

Given sets X and Y ...

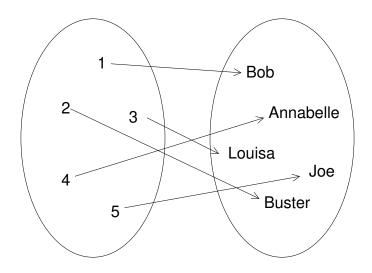
[Define f**]** Let $f: X \to Y$ be a function defined as ...

Suppose $y \in Y$. Somehow find $x \in X$ such that f(x) = y. Hence f is onto.

Suppose $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Somehow show $x_1 = x_2$. Hence f is one-to-one.

Since f is a one-to-one correspondence, X and Y have the same cardinality as each other.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as |X| = n, if there exists a one-to-one correspondence from $\{1, 2, \dots n\}$ to X. Moreover, $|\emptyset| = 0$.



Two finite sets X and Y have the *the same cardinality* as each other if there exists a one-to-one correspondence from X to Y.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as |X| = n, if there exists a one-to-one correspondence from $\{1, 2, \dots n\}$ to X. Moreover, $|\emptyset| = 0$.

Given a set X, if there exists $n \in \mathbb{N}$ and a one-to-one correspondence from $\{1, 2, \dots n\}$ to X, then X is *finite* and |X| = n. Otherwise, X is *infinite*.

Are all infinities equal?

Which is more intuitive to you,

$$|\mathbb{N}| = |\mathbb{W}| = |\mathbb{Z}| = |\mathbb{Q}| = |\mathbb{R}|$$

or

$$|\mathbb{N}|<|\mathbb{W}|<|\mathbb{Z}|<|\mathbb{Q}|<|\mathbb{R}|$$

?

Thm 7.19. W and \mathbb{N} have the same cardinality.

Proof. [We need a one-to-one correspondence from $\mathbb N$ to $\mathbb W$.]

Let $f : \mathbb{W} \to \mathbb{N}$ be defined so that f(n) = n + 1.

Suppose $n \in \mathbb{N}$. Then f(n-1) = (n-1) + 1 = n, so f is onto.

Next suppose $n_1, n_2 \in \mathbb{N}$ such that $f(n_1) = f(n_2)$. Then $n_1 + 1 = n_2 + 1$, and moreover $n_1 = n_2$. Hence f is one-to-one.

Since a one-to-one correspondence exists between $\mathbb W$ and $\mathbb N$, the two sets have the same cardinality. \square

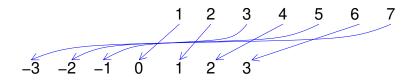
A set X is *countably infinite* if there exists a one-to-one correspondence from \mathbb{N} to X.

A set is *countable* if it is finite or countably infinite. Otherwise it is *uncountable*.

Thm 7.20. \mathbb{Z} is countably infinite.

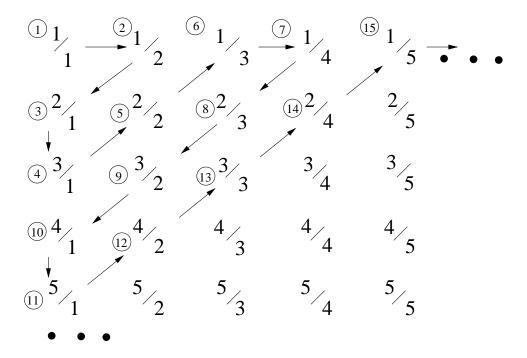
Proof. [We need a one-to-one correspondence from \mathbb{N} to \mathbb{Z} .] Let $f: \mathbb{N} \to \mathbb{Z}$ be defined so that

$$f(x) = \begin{cases} n \operatorname{div} 2 & \text{if } n \text{ is even} \\ -(n \operatorname{div} 2) & \text{otherwise} \end{cases}$$



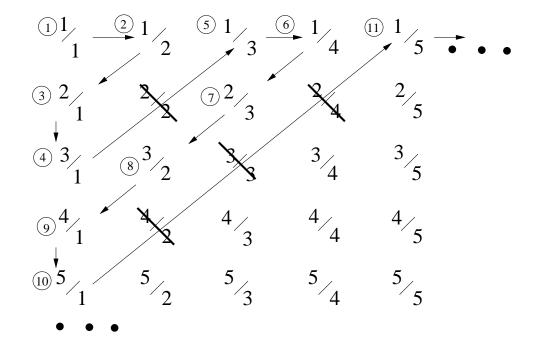
Since f is a one-to-one correspondence, \mathbb{Z} is countably infinite. \square





```
fun findRoom(busNum, seatNum) =
  let.
    fun nextPair(a, b) =
      if a = 1 and also b \mod 2 = 1 then (1, b + 1)
      else if b = 1 and also a mod 2 = 0
           then (a + 1, 1)
      else if (a + b) \mod 2 = 1 then (a + 1, b - 1)
      else (a - 1, b + 1);
    fun findRoomHelper(i, currentPair) =
      if currentPair <> (busNum, seatNum)
      then findRoomHelper(i + 1, nextPair(currentPair))
      else i;
  in
    findRoomHelper(1, (1, 1))
end;
```

```
fun findBusSeat(room) =
  let.
    fun nextPair(a, b) =
      if a = 1 and also b \mod 2 = 1 then (1, b + 1)
      else if b = 1 and also a mod 2 = 0
           then (a + 1, 1)
      else if (a + b) \mod 2 = 1 then (a + 1, b - 1)
      else (a - 1, b + 1);
    fun findBusSeatHelper(i, currentPair) =
      if i <> room
      then findBusSeatHelper(i + 1,
                              nextPair(currentPair))
      else currentPair;
  in
    findBusSeatHelper(1, (1, 1))
  end;
```



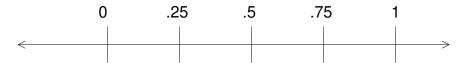
Thm 7.21. \mathbb{Q}^+ is countably infinite.

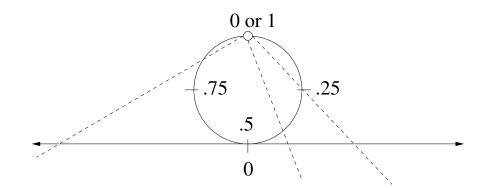
So,

$$|\mathbb{N}| = |\mathbb{W}| = |\mathbb{Z}| = |\mathbb{Q}|$$

What about \mathbb{R} ?

Thm 7.22. (0,1) has the same cardinality as \mathbb{R} .





Thm 7.23. (0,1) is uncountable.

Proof. Suppose (0,1) is countable. Then there exists a one-to-one correspondence $f: \mathbb{N} \to (0,1)$. We will use f to give names to the all the digits of all the numbers in (0,1), considering each number in its decimal expansion, where each $a_{i,j}$ stands for a digit.:

$$f(1) = 0.a_{1,1}a_{1,2}a_{1,3} \dots a_{1,j} \dots$$

$$f(2) = 0.a_{2,1}a_{2,2}a_{2,3} \dots a_{2,j} \dots$$

$$\vdots$$

$$f(x) = 0.a_{x,1}a_{x,2}a_{x,3} \dots a_{x,j} \dots$$

$$\vdots$$

Now construct a number $d = 0.d_1d_2d_3...d_i...$ as follows

$$d_i = \left\{ \begin{array}{ll} 1 & \text{if } a_{i,i} \neq 1 \\ 2 & \text{if } a_{i,i} = 1 \end{array} \right.$$

Since $d \in (0,1)$ and f is onto, there exists an $x \in \mathbb{N}$ such that f(x) = d. Moreover,

$$f(x) = 0.a_{x,1}a_{x,2}a_{x,3} \dots a_{x,x} \dots$$

SO

$$d=0.a_{x,1}a_{x,2}a_{x,3}\ldots a_{x,x}\ldots$$

by substitution. In other words, $d_i = a_{x,i}$, and specifically $d_x = a_{x,x}$. However, by the way that we have defined d, we know that $d_x \neq a_{x,x}$, a contradiction. Therefore (0,1) is not countable. \square