
Chapter 5 roadmap:

I Introduction to relations (Monday before break)

I Properties of relations (Wednesday and Friday before break)

I Transitive closure (Monday)

I Partial order relations (Today)

I Review for Test 2 (Friday)

I Test 2 on Chapters 4 & 5 (next week Monday)

Today:

I Antisymmetry

I Partial order relations

I Topological sort
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symmetric asymmetric antisymmetric
(not symmetric) (“very” not symmetric)

All arrows There exists an arrow No arrows have back arrows
have a back arrow. without a back arrow. except self loops.



Formal definition:
A relation R on a set X is antisymmetric if ∀ x , y ∈ X, if (x , y) ∈ R and
(y , x) ∈ R, then x = y.

Informal definition:
If both an arrow and its reverse exist in an antisymmetric relation R, then that
arrow must be a self loop (and, hence, it is its own reverse).

Alternate formal definition:
A relation R on a set X is antisymmetric if ∀ (x , y) ∈ R, either x = y or
(y , x) /∈ R.



A relation R on a set X is antisymmetric if ∀ x , y ∈ X, if (x , y) ∈ R and
(y , x) ∈ R, then x = y.

Ex 5.8.9. Prove that | (divides) on N is antisymmetric.

Proof. Suppose x , y ∈ N, x |y, and y |x (that is, (x , y), (y , x) ∈ |). By
definition of divides, there exists i , j ∈ N such that

x = i · y
y = j · x

Then

x = i · j · x by substitution
1 = i · j by cancellation
i = j = 1 by arithmetic
x = y by identity

Therefore | is antisymmetric by definition. �



Antisymmetry:

A relation R on a set X is antisymmetric if ∀ x , y ∈ X , if (x , y) ∈ R and
(y , x) ∈ R, then x = y .

Partial order relation:
A partial order relation (or just partial order) is a relation that is reflexive,
transitive, and antisymmetric.
A strict partial order (relation) is a relation that is irreflexive, transitive and
antisymmetric.

Partially ordered set:
A partially ordered set or poset is a set together with a partial order on that
set.
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R = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, d), (c, c), (c , d), (d , d)}
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b

c
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f

d

a

g

h Comparable: a � c , d � f , e � f , e � h, c � i

Not comparable: a and b; d and e; f and h

Maximal and greatest: i

Minimal: a and b

No least

Everyday examples: Preparing a meal, writing a term paper, getting dressed
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A partial order R on a set X is a total order if for all x , y ∈ X , either x � y or y � x ,
that is, x and y are comparable.

Standard example of a total order: ≤.



A partial order relation (or just partial order) is a relation that is reflexive, transitive,
and antisymmetric.

A partial order R on a set X is a total order if for all x , y ∈ X , either x � y or y � x ,
that is, x and y are comparable.

A topological sort of a partial order R is a total order that is a superset of R.

| (divides) ≤

is prerequisite for Ralph takes before

can put on before you put on before
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R = {(a, a), (a, b), (a, c), (a, d), (b, b), (b, d), (c, c), (c , d), (d , d)}

A topological sort for R: R ∪ {(b, c)}, written as a, b, c , d

Another topological sort for R: R ∪ {(c , b)}, written as a, c, b, d



For next time:
Pg 226: 5.8.(1-5)
Pg 231 5.9.(1 & 8)

Read 6.(1–3)


