
This week (Chapter 2):

I Abstract data types (Today)

I Data Structures (Wednesday and Friday)

I Programming practices (Friday)

Today:

I Analyses of merge sort and quick sort

I Exercises

I Definition abstract data type, especially in contrast with data structure

I The “canonical” ADTs

I Start data structures (time permitting)



def mat_find1(M, x):

i = 0

found = False

while not found and i < len(M):

j = 0

while not found and j < len(M[i]) :

found = M[i][j] == x

j += 1

i += 1

if found :

return (i-1, j-1)

else :

return None

(j)

(j)

i

Invariant (Outer loop of mat find1)

1. ∀ a ∈ [0, i − 1),∀ b ∈ [0,m), M[a][b] 6= x

2. ∼ found iff ∀ b ∈ [0,m), M[i − 1][b] 6= x

3. found iff M[i − 1][j − 1] = x

4. i is the number of iterations of the outer
loop completed.



def mat_find1(M, x):

i = 0

found = False

while not found and i < len(M):

j = 0

while not found and j < len(M[i]) :

found = M[i][j] == x

j += 1

i += 1

if found :

return (i-1, j-1)

else :

return None

i

j

Invariant (Inner loop of mat find1)

1. ∀ b ∈ [0, j − 1), M[i ][b] 6= x

2. found iff M[i ][j − 1] = x

3. j is the number of iterations of the inner
loop completed on the current iteration of
the outer loop.



def mat_find1(M, x):

i = 0

found = False

while not found and i < len(M):

j = 0

while not found and j < len(M[i]) :

found = M[i][j] == x

j += 1

i += 1

if found :

return (i-1, j-1)

else :

return None

In the worse case, each position in the array is
read once, hence Θ(m2) or Θ(n).



def mat_find2(M, x):

i = len(M) - 1

j = 0

found = False

while not found and i >= 0 and j < len(M[i]):

while i >= 0 and M[i][j] > x :

i -= 1

while i >= 0 and j < len(M[i]) and M[i][j] < x :

j += 1

if i >= 0 and j < len(M[i]) :

found = M[i][j] == x

if found :

return (i, j)

else :

return None

1 2 8 21 43 57 92 103

3 5 9 23 44 61 93 105

17 22 27 30 46 62 95 106

37 39 42 47 48 69 99 108

64 67 71 75 76 77 101 110

73 74 81 88 89 91 107 119

92 96 100 102 103 106 111 121

115 116 126 131 138 146 152 160



def mat_find2(M, x):

i = len(M) - 1

j = 0

found = False

while not found and i >= 0 and j < len(M[i]):

while i >= 0 and M[i][j] > x :

i -= 1

while i >= 0 and j < len(M[i]) and M[i][j] < x :

j += 1

if i >= 0 and j < len(M[i]) :

found = M[i][j] == x

if found :

return (i, j)

else :

return None

On any iteration of the outer loop, at least
one of the inner loops must have at least one
iteration, or else we have found the item at
position (i , j).
Thus the number of iterations of the outer
loop is less than or equal to the sum of the
total number of iterations of the inner loops
plus one. Each inner loop will have at most
m total iterations.
Hence worst case Θ(m) or Θ(

√
n).



An abstract data type (ADT) is a data type whose representation is hidden
from the client. Implementing an ADT as a Java class is not very different
from implementing a function library as a set of static methods. The primary
difference is that we associate data with the function implementations and
we hide the representation of the data from the client. When using an ADT,
we focus on the operations specified in the API and pay no attention to the
data representation; when implementing an ADT, we focus on the data, then
implement operations on that data.

[Sedgewick and Wayne, Algorithms, Pg 64; also cf pg 84]



The “canonical ADTs”:

List. Linear collection with sequential and random access.

Stack. Linear collection with LIFO access.

Queue. Linear collection with FIFO access.

Set. Unordered collection with binary membership.

Bag. Unordered collection with enumerated membership.

Map. Unordered collection of associations between keys and values.



List

Stack
LIFO access

Queue

Random access

FIFO access

Map
Lookup by index Lookup by key

Whole−number value

Any value

Set

Bag

Items

Associations Binary membership

Enumerated membershp



The four basic ways to implement an ADT:

I Use an array

I Use a linked structure

I Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

I Adapt an existing implementation of another ADT.



Coming up:

Due Tues, Jan 25:
Finish reading Section 2.1
Do Ex 1.11
Take ADT quiz

Due Fri, Jan 28:
Read Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “basic data structures” practice problems (suggested by Mon, Jan 31)
Do “Implementing ADTs” project (suggested by Wed, Feb 2)


