Prolegomena unit outline:

- Algorithms and correctness (last week Wednesday and Friday)
- Algorithms and efficiency (Wednesday and today)
- Abstract data types (next week Monday)
- Data Structures (next week Wednesday and Friday)

Today and Friday:

- Go over Ex 1.(6 \& 7)
- The general meaning of efficiency
- The analyses of bounded linear search, binary search, and selection sort
- The precise meaning of big-oh, big-theta, and big-omega
- The costs of elemental algorithms
- The analysis of quick sort

Objections to and misconceptions of big-oh notation take forms such as

- Big-oh notation specifies only an upper bound of running time, which might be widely imprecise.
- Big-oh notation measures only the worst case, when the best case or the typical case might be much better.
- Big-oh ignores constants, which can greatly affect running time in practice.
- Algorithms that have the same big-oh category can have widely different running times in practice.
- Big-oh considers only the size of the input, when in fact other attributes of the input can greatly affect running time.
$\Theta(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \exists c_{0}, c_{1}, n_{0} \in \mathbb{N}\right.$ such that $\left.\forall n \in\left[n_{0}, \infty\right), c_{0} g(n) \leq f(n) \leq c g(n)\right\}$

$$
\begin{aligned}
p(x)=c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{d-1} x^{d-1}+c_{d} x^{d} \quad p(x) & =c_{0}+c_{1} x+c_{2} x^{2}+\cdots+c_{d-1} x^{d-1}+c_{n} x^{d} \\
& =c_{0}+x\left(c_{1}+c_{2} x+\cdots+c_{n-1} x^{d-2}+c_{d} x^{d-1}\right) \\
& =c_{0}+x\left(c_{1}+x\left(c_{2}+\cdots+c_{n-1} x^{d-3}+c_{d} x^{d-2}\right)\right) \\
& =c_{0}+x\left(c_{1}+x\left(c_{2}+\cdots+x\left(c_{d-1}+c_{d} x\right) \cdots\right)\right)
\end{aligned}
$$

```
def eval_poly(coefficients, x):
    x_pow = 1.0
    result = 0.0
    for c in coefficients:
        result += c * x_pow
        x_pow *= x
    return result
```

```
def eval_poly_horner(coefficients, x):
    result = 0.0
    for c in reversed(coefficients) :
        result *= x
        result += c
    return result
```

$g(n) \sim f(n)$ means $\lim _{n \rightarrow \infty} \frac{g(n)}{f(n)}=1$.
eval_poly is $\sim 3 n$, eval_poly_horner is $\sim 2 n$
$f \sim g$ means the functions are asymptotically equal, that is, that $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=1$.
For example, $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3} \sim \frac{n^{3}}{6}$.
$f=O(g)$, which really should be written $f(n) \in O(g(n))$, means that a scaled version of g asymptotically bounds f above. It means there exists a c such that when n is large enough, $f(n) \leq c g(n)$. For example, $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}=O\left(\frac{n^{3}}{6}\right)$ but also $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}=O\left(n^{3}\right)$ and $\frac{n^{3}}{6}-\frac{n^{2}}{2}+\frac{n}{3}=O\left(n^{4}\right)$.

```
int merge_sort_r(int sequence[], int aux[], int low, int high)
{
    if (low + 1 >= high)
        return 0;
    else {
        int compars = 0; // the number of comparisons
        int midpoint = (low + high) / 2; // index to the middle of the range
        int k, n;
        n = high - low;
        compars += merge_sort_r(sequence, aux, low, midpoint);
        compars += merge_sort_r(sequence, aux, midpoint, high);
        compars = merge(sequence, aux, low, high);
        return compars;
    }
}
```

$$
C_{m s}(n)= \begin{cases}0 & \text { if } n \leq 1 \\ n-1+2 C_{m s}\left(\frac{n}{2}\right) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\sum_{i=0}^{\lg n-1} 2^{i} \cdot\left(\frac{n}{2^{i}}-1\right) & =\sum_{i=0}^{\lg n-1} n-\sum_{i=0}^{\lg n-1} 2^{i} \\
& =n \lg n \quad-n+1
\end{aligned}
$$

```
int quick_sort_r(int sequence[], int low, int high)
{
    if (low + 1 >= high) return 0;
    int i, j, temp;
    int compars = 0;
    for (i = j = low; j < high-1; j++) {
        compars++;
        if (sequence[j] < sequence[high-1])
            {
                temp = sequence[j];
            sequence[j] = sequence[i];
            sequence[i] = temp;
            i++;
        }
    }
    temp = sequence[i];
    sequence[i] = sequence[j];
    sequence[j] = temp;
    return compars + quick_sort_r(sequence, low, i)
        + quick_sort_r(sequence, i+1, high);
}
```


$$
(n-1)+(n-2)+(n-3)+\cdots+1+0=\sum_{i=1}^{n-1} i=\frac{n \cdot(n-1)}{2}=\frac{n^{2}-n}{2}
$$

Coming up:

Due Today:
Read Sections 1.(3 \& 4)
Do Exercises 1.(27, 28, 42, 43)
Take quiz
Due Tues, Jan 25:
Read Section 2.1
Do Exercise 1.11
Take quiz

