
Prolegomena unit outline:

I Algorithms and correctness (last week Wednesday and Friday)

I Algorithms and efficiency (Wednesday and today)

I Abstract data types (next week Monday)

I Data Structures (next week Wednesday and Friday)

Today and Friday:

I Go over Ex 1.(6 & 7)

I The general meaning of efficiency

I The analyses of bounded linear search, binary search, and selection sort

I The precise meaning of big-oh, big-theta, and big-omega

I The costs of elemental algorithms

I The analysis of quick sort

Objections to and misconceptions of big-oh notation take forms such as

I Big-oh notation specifies only an upper bound of running time, which might be
widely imprecise.

I Big-oh notation measures only the worst case, when the best case or the typical
case might be much better.

I Big-oh ignores constants, which can greatly affect running time in practice.

I Algorithms that have the same big-oh category can have widely different running
times in practice.

I Big-oh considers only the size of the input, when in fact other attributes of the
input can greatly affect running time.

Θ(g) = {f : N→ N | ∃ c0, c1, n0 ∈ N such that ∀ n ∈ [n0,∞), c0g(n) ≤ f (n) ≤ cg(n)}

c1g(n) = 3n2

f (n) = 2n2 + 3n + 4

c0g(n) = 2n2

p(x) = c0 + c1x + c2x
2 + · · ·+ cd−1x

d−1 + cdx
d

def eval_poly(coefficients, x):

x_pow = 1.0

result = 0.0

for c in coefficients:

result += c * x_pow

x_pow *= x

return result

p(x) = c0 + c1x + c2x
2 + · · ·+ cd−1x

d−1 + cnx
d

= c0 + x(c1 + c2x + · · ·+ cn−1x
d−2 + cdx

d−1)
= c0 + x(c1 + x(c2 + · · ·+ cn−1x

d−3 + cdx
d−2))

= c0 + x(c1 + x(c2 + · · ·+ x(cd−1 + cdx) · · ·))

def eval_poly_horner(coefficients, x):

result = 0.0

for c in reversed(coefficients) :

result *= x

result += c

return result

g(n) ∼ f (n) means limn→∞
g(n)
f (n) = 1.

eval poly is ∼ 3n, eval poly horner is ∼ 2n

f ∼ g means the functions are asymptotically equal, that is, that limn→∞
f (n)
g(n) = 1.

For example, n3

6 −
n2

2 + n
3 ∼

n3

6 .

f = O(g), which really should be written f (n) ∈ O(g(n)), means that a scaled version
of g asymptotically bounds f above. It means there exists a c such that when n is
large enough, f (n) ≤ cg(n). For example, n3

6 −
n2

2 + n
3 = O(n

3

6) but also
n3

6 −
n2

2 + n
3 = O(n3) and n3

6 −
n2

2 + n
3 = O(n4).

int merge_sort_r(int sequence[], int aux[], int low, int high)

{

if (low + 1 >= high)

return 0;

else {

int compars = 0; // the number of comparisons

int midpoint = (low + high) / 2; // index to the middle of the range

int k, n;

n = high - low;

compars += merge_sort_r(sequence, aux, low, midpoint);

compars += merge_sort_r(sequence, aux, midpoint, high);

compars = merge(sequence, aux, low, high);

return compars;

}

}

Cms(n) =

{
0 if n ≤ 1
n − 1 + 2Cms(n2) otherwise

2

1 1

2

1 1

2

1 1

n
2

n
2

n
4

n
4

n
4

n
4

n

n · 0

n − 1

n
2
· 1

4 · (n
4
− 1)

2 · (n
2
− 1)

∑lg n−1
i=0 2i · (n

2i
− 1) =

∑lg n−1
i=0 n −

∑lg n−1
i=0 2i

= n lg n − n + 1

int quick_sort_r(int sequence[], int low, int high)

{

if (low + 1 >= high) return 0;

int i, j, temp;

int compars = 0;

for (i = j = low; j < high-1; j++) {

compars++;

if (sequence[j] < sequence[high-1])

{

temp = sequence[j];

sequence[j] = sequence[i];

sequence[i] = temp;

i++;

}

}

temp = sequence[i];

sequence[i] = sequence[j];

sequence[j] = temp;

return compars + quick_sort_r(sequence, low, i)

+ quick_sort_r(sequence, i+1, high);

}

1

1

1 1

11 1 1 1

n

n · 0

n − 1

4 · (n−3
4
− 1)

2 · (n−1
2
− 1)n−1

2
n−1
2

n−3
4

n−3
4

n−3
4

n−3
4

1

1

1

1

n

n − 2

n − 3

n − 1

n − 1

n − 3

n − 2

n − 4

0

(n − 1) + (n − 2) + (n − 3) + · · ·+ 1 + 0 =
n−1∑
i=1

i =
n · (n − 1)

2
=

n2 − n

2

Coming up:

Due Today:
Read Sections 1.(3 & 4)
Do Exercises 1.(27, 28, 42, 43)
Take quiz

Due Tues, Jan 25:
Read Section 2.1
Do Exercise 1.11
Take quiz

