
Chapter 3, Case Studies:

I Linear-time sorting algorithms (Monday and Wednesday)

I Disjoint sets and array forests (Today)

I Priority queues (Next week Monday)

I N-sets and bit vectors (Next week Wednesday)

Today:

I Problem statement

I Disjoint set ADT details

I The array forest abstraction and data structure

I Find and union strategies, with optimizations



Problem statement:
Suppose we have a collection of items connected by an unknown equivalence
relation. Efficiently find the equivalence classes in this collection as information
about the relation is discovered.





Dave

Bob

Alice

RalphGeorgia

Carol

Nate

Trent

Ida Jack

Eve

Wendy

Karen

Xavier
Zeke

LarryHenry

Pete

Fred

Sarah
Ursulla

Vick

Olivia

Queenie
Yvette

Moira



a = c

e = a + b

d = b

g = 1

f = d + c

h = e * g



The disjoint set ADT:

I Main operations: union two sets, find a set for a given element, and test if two
elements are in the same set.

I The universe is closed.

I We assume all elements can be indexed, [0,N).

I A set in the partition is identified by a leader.



0

1

2

3

4

5
6

7

8

9

10

11
12

13

14

15

1 2 3 5

0 6 7

8

9 11

10 12

14

13 15

4



7

8

0

1

2

3

4

5
6

7

8

9

10

11
12

13

14

15

1 2 3 5

0 6

4

9

10 12

14

13 15

11



Invariant (Class ArrayForestDisjointSet)

For all i ∈ [0, n),

(a) leader(i) = leader(parents(i)), that is, id(i) points to another element in the
same set as i .

(b) leader(i) = parents[leader(i)], that is, leaders all point to themselves.

(c) Following a finite number links implied by parents will converge, that is, there is
no circularity in the tree.



parents: int[]

BruteForceDisjointSet ArrayForestDisjointSet

finder: findStrategy

unioner: unionStrategy

find(int)

union(int, int)

connected(int,int)

count()

findAll(int)

connected(int,int)

count()

findAll(int)

DisjointSet

find(int)

union(int, int)

UnionStrategy

union(int, int)

LazyUnion AggressiveUnion RankingUnion
sizes: int[]

FindStrategy

find(int)

PlainFind CompressingFind

unioner.union(p,q);

im
p

le
m

e
n

ts

finder.find(p);

im
p

le
m

e
n

ts

im
p

le
m

e
n

ts



Union strategy LazyUnion AggressiveUnion WeightedUnion LazyUnion WeightedUnion

Find strategy PlainFind PlainFind PlainFind CompressingFind CompressingFind

Find heavy: 1.30E7 3.34E7 7.40E5 9.26E5 6.68E5
(5.68E6) (8.40E3) (1.80E4) (2.38E4) (9.34E3)

Even mix: 9.89E7 4.41E7 1.20E6 1.56E6 9.80E5
(1.22E7) (9.93E3) (1.97E4) (2.12E4) (9.96E3)

Union heavy: 1.62E8 4.39E7 1.40E6 1.71E6 1.04E6
(1.26E7) (9.99E3) (2.01E4) (1.59E4) (1.00E4)



Coming up: (all end-of-day)

Do linear sorting project (suggested by Mon, Feb 7)

Due Today:
Finish reading Section 3.2 (disjoint sets and array forests)
Take disjoint-sets quiz

Due Mon, Feb 7:
Read Section 3.3 (heaps and priority queues)

Due Wed, Feb 9:
Take heap/pq quiz

Due Thurs, Feb 10:
Read Section 3.4
Do Exercises 3.(27 & 28).
Take N-sets quiz


