
Chapter 3, Case Studies:

I Linear-time sorting algorithms (Monday and Wednesday)

I Disjoint sets and array forests (Today)

I Priority queues (Next week Monday)

I N-sets and bit vectors (Next week Wednesday)

Today:

I Problem statement

I Disjoint set ADT details

I The array forest abstraction and data structure

I Find and union strategies, with optimizations



Problem statement:
Suppose we have a collection of items connected by an unknown equivalence
relation. Efficiently find the equivalence classes in this collection as information
about the relation is discovered.
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a = c

e = a + b

d = b

g = 1

f = d + c

h = e * g



The disjoint set ADT:

I Main operations: union two sets, find a set for a given element, and test if two
elements are in the same set.

I The universe is closed.

I We assume all elements can be indexed, [0,N).

I A set in the partition is identified by a leader.
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Invariant (Class ArrayForestDisjointSet)

For all i ∈ [0, n),

(a) leader(i) = leader(parents(i)), that is, id(i) points to another element in the
same set as i .

(b) leader(i) = parents[leader(i)], that is, leaders all point to themselves.

(c) Following a finite number links implied by parents will converge, that is, there is
no circularity in the tree.
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Union strategy LazyUnion AggressiveUnion WeightedUnion LazyUnion WeightedUnion

Find strategy PlainFind PlainFind PlainFind CompressingFind CompressingFind

Find heavy: 1.30E7 3.34E7 7.40E5 9.26E5 6.68E5
(5.68E6) (8.40E3) (1.80E4) (2.38E4) (9.34E3)

Even mix: 9.89E7 4.41E7 1.20E6 1.56E6 9.80E5
(1.22E7) (9.93E3) (1.97E4) (2.12E4) (9.96E3)

Union heavy: 1.62E8 4.39E7 1.40E6 1.71E6 1.04E6
(1.26E7) (9.99E3) (2.01E4) (1.59E4) (1.00E4)



Coming up: (all end-of-day)

Do linear sorting project (suggested by Mon, Feb 7)

Due Today:
Finish reading Section 3.2 (disjoint sets and array forests)
Take disjoint-sets quiz

Due Mon, Feb 7:
Read Section 3.3 (heaps and priority queues)

Due Wed, Feb 9:
Take heap/pq quiz

Due Thurs, Feb 10:
Read Section 3.4
Do Exercises 3.(27 & 28).
Take N-sets quiz


