Chapter 4, Graphs:

- ► (Finish *N*-sets and bit vectors...(**Today**))
- Concepts and implementation (Today)
- Traversal (next week Monday)
- Review for Test 1 (next week Wednesday)
- ► Test 1 (next week Friday)
- Minimum spanning trees (week-after Wednesday and Friday)

Today:

- Applications of graphs
- Vocabulary, taxonomy, and theory
- Representing and implementing graphs

- Graph
- ► Vertex (compare *node*)
- ► Edge (compare *link*)
- ► Incident
- Adjacent
- Degree
- Complete
- Dense

- Sparse
- Directed graph
- Undirected graph
- ► Parallel edge
- Self loop
- Simple graph
- Weighted graph

Adjectives

Trivial Having only one vertex and no edges.

Simple Having no repeated vertices (except, possibly, the initial and terminal).

Closed Having the same vertex as initial and terminal.

Nouns

Walk An alternating sequence of vertices and edges, each edge coming between its end points.

Path A walk with no repeated edge (repeated

vertices are ok).

Circuit A closed path (no repeated edges, initial and terminal the same).

Cycle A simple circuit (no repeated edges or vertices, except the initial and terminal, which are the same).

	Adjacency matrix	Adjacency list
Space	$\Theta(V^2)$	$\Theta(V+E)$
adjacent(u, v)	$\Theta(1)$	$\Theta(deg(u))$ (expected case)
adjacents(u)	$\Theta(V)$	$\Theta(deg(u))$

Coming up:

Do heaps and priority queue project (suggested by Mon, Feb 14) Do bit vector and N-set project (suggested by Wed, Feb 23)

Due **Wed, Feb 23** (but spread it out): Read Section 4.(1–3) Do Exercises 4.(22-25). Take graph quiz