
Chapter 5, Dynamic Programming:

I Introduction and sample problems (this past Friday)

I Principles of DP (Today)

I DP algorithms, solutions to sample problems (Wednesday)

I Optimal BSTs (Friday)

I [Test 2, Wed Apr 6, not covering DP]

Today:

I Review of memoization
I Introduction of three problems (left over from previous class)

I 0-1 Knapsack
I Longest common subsequence
I Matrix multiplication

I Elements of dynamic programming
I Optimization problems
I Optimal substructure
I Dynamic programming algorithms

I Solution to the knapsack problem (time permitting)

Ex 6.5. Explain why this function can’t use memoization:

idgen = -1

def make_unique_id(name) :

global allows us to modify idgen inside this function

global idgen

idgen += 1

return name + str(idgen)

Ex 6.6. Explain why this function can’t use memoization:

def pick_at_random(seq) :

return seq[random.randint(0, len(seq)-1)]

Ex. 6.7. Explain why this function can’t use memoization:

f = open('data', 'r')

def next_n_lines(n) :

lines = ''

for i in range(n) :

lines += f.readline()

return lines

Matrix multiplication.(
2 8
5 7

)(
3 6
1 4

)
=

(
2 · 3 + 8 · 1 2 · 6 + 8 · 4
5 · 3 + 7 · 1 5 · 6 + 7 · 4

)
=

(
14 44
22 58

)

(
1 3 12
2 7 11

)4 10
8 6
9 5

 =

(
1 · 4 + 3 · 8 + 12 · 9 1 · 10 + 3 · 6 + 12 · 5
2 · 4 + 7 · 8 + 11 · 9 2 · 10 + 7 · 6 + 11 · 5

)
=

(
136 88
163 117

)

(
1 2 5
6 8 9

)3
7
4

 =

(
1 · 3 + 2 · 7 + 5 · 4
6 · 3 + 8 · 7 + 9 · 4

)
=

(
37

110

)

Progression of dynamic-programming problems:

1. Problem statement . . . recognizing optimal substructure

2. Recursive characterization . . . recognizing overlapping subproblems

3. Dynamic programming algorithm

Make a table for subproblems
Initialize base cases in the table
For all other subproblems / cells in the table

For each option in the decision for that subproblem
Lookup subsubproblem results and compare

Record best choice for that subproblem
Return minimum cost or maximum value for top-level problem

0-1 Knapsack.
Given a capacity c and the value and weight of n items in arrays V and W ,
find a subset of the n items whose total weight is less than or equal to the
capacity and whose total value is maximal.

V 20 15 90 100
W 1 2 4 5

0 1 2 3

c = 7

set weight value
{2, 3} 9 190 exceeds capacity
{1, 3} 7 115 not optimal
{0, 1, 2} 7 125 optimal

Knapsack
Let B[i][j] be the value of the best way to fill remaining knapsack capacity i using only
items 0 through j . Then B[c][n− 1] is the value-solution to the entire problem, that is,

B[c][n − 1] = max
K

n−1∑
j=0

K [j]V [j]

In the general case we have the choice between

V [j]︸︷︷︸
value of
the jth

item

+B[i −W [j]︸ ︷︷ ︸
remaining
capacity

after
taking the
jth item

][j − 1]

︸ ︷︷ ︸
The best way to
fill the remaining
capacity with the
remaining items

versus B[i][j − 1]︸ ︷︷ ︸
The best way to

fill the unchanged
capacity with the

remaing items

Knapsack

B[i][j] =

0 if j = 0 and W [0] > i (0th doesn’t fit)

V [0] if j = 0 and W [0] ≤ i (0th fits)

B [i] [j − 1] if W [j] > i (jth doesn’t fit)

max

V [j] + B [i −W [j]] [j − 1] ,

B [i] [j − 1]

 otherwise (j fits)

Coming up:

Catch up on projects. . .
Do Traditional RB project (suggested by Mon, Mar 28)
(Recommended: Do LL RB project for your own practice)

Due Mon, Mar 28 (end of day)
Read Section 6.3
Do Exercises 6.(16, 19, 23, 33)
Take quiz Tues, Mar 29

Due Wed, Mar 30 (classtime)
Read Section 6.4
Do Exercises 6.(20, 24, 32)

Due Fri, Apr 1 (end of day)
Do Project 6.1.b as a practice problem
Take quiz

