
Chapter 4, Graphs:

I Concepts and implementation (Friday, Feb 11)

I Traversal (Monday, Feb 14)

I Minimum spanning trees (Wednesday and Friday)

I Single-source shortest paths (next week Monday)

I (Start BSTs Wednesday Mar 2)

Today:

I A couple of test solutions

I Problem: There and back again

I Proof and analysis of Kruskal’s algorithm

I Prim’s algorithm, plus proof and analysis

I Performance comparison

I Solution to There and back again

I Introduce SSSP problem



void radixSort(int[] sequence) {

int maxTenPow = 10; // find a power of ten greater than all items

for (int i = 0; i < squence.length; i++)

while (squence[i] > maxTenPow) maxTenPow *= 10;

for (int tenPow = 1; tenPow < maxTenPow; tenPow *= 10)

sort(sequence, new Comparator<Integer>() {

int compareTo(Integer a, Integer b) {

return (a / tenPow) % 10 - (b / tenPow) % 10;

} });

}

Invariant for the first loop.

a. ∀ j ∈ [0, i), sequence[j ] < maxTenPow.

b. ∃ c ∈W | maxTenPow = 10c .

c. i is the number of iterations completed.



void radixSort(int[] sequence) {

int maxTenPow = 10; // find a power of ten greater than all items

for (int i = 0; i < squence.length; i++)

while (squence[i] > maxTenPow) maxTenPow *= 10;

for (int tenPow = 1; tenPow < maxTenPow; tenPow *= 10)

sort(sequence, new Comparator<Integer>() {

int compareTo(Integer a, Integer b) {

return (a / tenPow) % 10 - (b / tenPow) % 10;

} });

}

Invariant for the second loop.

a. ∀ j ∈ [0, n − 1), sequence[j ]%tenPow < sequence[j + 1]%tenPow.

b. log10 tenPow is the number of iterations completed.



class X {

public int priority;

}

// a. O(1)

X x = xpq.max();

xpq.decreaseKey(x);

// b. O(lg n)

X x = xpq.max();

x.priority = 0;

xpq.decreaseKey(x);

// c. O(n)

y.priority = 0;

xpq.decreaseKey(y);



4.32 In the far-off land of Micomicona, all the cities have only one-way streets. Its
tourism board claims that in every city it is possible to drive (legally) from any
intersection in that city to any other intersection. Finish the method
VerifyThereAndBackAgain.verifyThereAndBackAgain() which takes a Graph

representing a city as a directed graph with intersections as vertices and street
segments as edges and determines whether it is possible to go from any intersection to
any other intersection. Tourists can use this method to test whether the tourism
board’s claim is true. For example, for the graph below left this is true, but false for
the graph below right.

Hint: This can be done fairly straightforwardly using things talked about in this section
in Θ(V 2 + VE ) time, but with a little creativity one could find a Θ(V + E ) algorithm
that accomplishes this.



Minimum spanning tree problem

Given a weighted, undirected, connected graph, find minimum spanning tree:

Tree: A (sub)graph with no cycles. [We represent the tree a a set of edges.]

Spanning: All vertices in the original graph are included in the tree.

Minimum: For all spanning trees, this has least total weight.



General strategy for MST (both algorithms):

I Maintain a set of edges A that is a subset of a MST

I At each step, add one edge to A until it’s a MST

Invariant (General MST main loop)

There exists T ⊆ E such that T is a minimum spanning tree of G and A ⊆ T.

General algorithm outline:

A = ∅
While A isn’t a MST

add an edge to A that maintains the invariant

Insight 1: A implicitly partitions vertices int connected components. The lightest edge
that connects two components is safe.



Lemma (Safe edges in Kruskal’s algorithm.)

If G = (V ,E ) is a graph, A is a subset of a minimum spanning tree for G , and
(u, v) is the lightest edge connecting any distinct connected components of A,
then (u, v) is a safe edge for A, that is, A ∪ {(u, v)} is a subset of a minimum
spanning tree.



Invariant (General MST main loop)

There exists T ⊆ E such that T is a minimum spanning tree of G and A ⊆ T.

Insight 1: A implicitly partitions vertices int connected components. The lightest edge
that connects two components is safe.

Invariant (Prim’s algorithm main loop)

A is a (single) tree.

Insight 2: The lightest edge that connects a new vertex to A is safe.



0
1

2

3

5

6

7

8

4

18
17

23

24
16

6 6

12
8

8

3

6

3

12

7

23

12

9

12

4



Minimum Spanning Tree Problem Single-Source Shortest Paths Problem

Given a weighted, undirected graph,
find the tree with least-total weight that
connects all the vertices, if one exists.

Given a weighted directed graph and a
source vertex, find the tree comprising the
shortest paths from that source to all other
reachable vertices.

I Both are defined for weighted graphs

I Both produce trees as a result

I Both minmize by weight

I For each we have two algorithms

Input is only a graph Input is a graph and a starting point
Problem usually is described on an undi-
rected graph

Problem usually is described on a directed
graph

Goal is to minimize total weight Goal is to minimize weight on each path
There is no clear winner between the
algorithms

One algorithm is clearly more efficient



Coming up:

Due Fri, Feb 25 [class time]
Read Section 4.4
Do Exercises 4.(39, 41, 42)
Take MST quiz

Do MST project (suggested by Monday, Feb 28)

Due Tues, Mar 1 [end of day]
Read Section 4.5
Do Exercises 4.(47, 48, 56) (note correction on 4.52)
Take SSSP quiz

Do SSSP project (suggested by Thursday, Mar 3)

Due Fri, Mar 4 [class time]
Read Sections 5.(1 & 2)
Do Exercises 5.(2 & 6)
Take BST quiz


