
Chapter 4, Graphs:

I Concepts and implementation (Friday, Feb 11)

I Traversal (Monday, Feb 14)

I Minimum spanning trees (Wednesday and Friday)

I Single-source shortest paths (next week Monday)

I (Start BSTs Wednesday Mar 2)

“Today” (Wednesday and Friday):

I MST problem definition

I Brute-force solution

I General structure of good solutions

I Kruskal’s algorithm, plus proof and analysis

I Prim’s algorithm, plus proof and analysis

I Performance comparison



0
1

2

3

5

6

7

8

4

18
17

23

24
16

6 6

12
8

8

3

6

3

12

7

23

12

9

12

4



General strategy for MST (both algorithms):

I Maintain a set of edges A that is a subset of a MST

I At each step, add one edge to A until it’s a MST

Invariant (General MST main loop)

There exists T ⊆ E such that T is a minimum spanning tree of G and A ⊆ T .

General algorithm outline:

A = ∅
While A isn’t a MST

add an edge to A that maintains the invariant

Insight 1: A implicitly partitions vertices into connected components. The lightest
edge that connects two components is safe.



Lemma (Safe edges in Kruskal’s algorithm.)

If G = (V ,E ) is a graph, A is a subset of a minimum spanning tree for G , and
(u, v) is the lightest edge connecting any distinct connected components of A,
then (u, v) is a safe edge for A, that is, A ∪ {(u, v)} is a subset of a minimum
spanning tree.



Proof. Suppose everything in the hypothesis, in particular that A is a subset of
some minimum spanning tree T and that u and v are in distinct connected
components of A, call them Au and Av . Let wT be the total weight of T , that is,
the sum of the weights of all the edges of T . We want to prove that adding (u, v)
to A makes something that is still a subset of some minimum spanning tree.

If (u, v) ∈ T , then we’re done. Suppose, then, that T does not contain (u, v).
Since T is a spanning tree, it means that u and v are connected in T . Pick the
lightest edge on the path from u to v that is not in A, call it (x , y). Essentially
(x , y) is an edge that was picked instead of (u, v) that contributed to connecting
Au and Av .



Snip out (x , y). This would disconnect T , that is, the graph T − {(x , y)} is not
a tree, but rather contains two connected components, one with u in it and the
other with v in it. Now splice in (u, v). That will reconnect u and v and make it
into a tree again. Formally we’ve made a new spanning tree
(T − {(x , y)}) ∪ {(u, v)}.

The hypothesis says that (u, v) was the lightest edge connecting distinct
components of A. That means w(u, v) ≤ w(x , y). That in turn means that the
total weight of the new spanning tree is also just as good, if not better, than the
old one: wT−{(x ,y)})∪{(u,v)} ≤ wT . Since it ties or beats a (supposed) minimum
spanning tree, (T − {(x , y)}) ∪ {(u, v)} must be a minimum spanning tree.
Therefore (u, v) is safe. �



Kruskal Prim
Unoptimized Optimized Unoptimized Optimized

Sparse Adjacency list 31579 28841 72364 58089
Adjacency matrix 49128 35493 67887 49537

Medium Adjacency list 147527 54877 180407 113555
Adjacency matrix 127485 59821 146358 75906

Dense Adjacency list 136762 69867 191617 123762
Adjacency matrix 162468 78154 130984 72245


