Chapter 6, Hash tables:

- General introduction; separate chaining (week-before Friday)
- Open addressing (last week Monday)
- Hash functions (last week Wednesday)
- Perfect hashing (Today)
- Hash table performance (Wednesday)
- (Start Ch 7, Strings, Friday)

In this video:

- Perfect hashing anticipated
- Motivation
- Goals
- Perfect hashing accomplished
- Definition of universal hashing
- Hash function class $\mathscr{H}_{p m}$
- Theorems and proofs
- Perfect hashing applied
- The design of a perfect hashing scheme
- The given code for the project

A hashing scheme must reduce the occurrence of collisions and "deal" with them when they happen.

- Separate chaining, where $m<n$, deals with collisions by chaining keys together in a bucket.
- Open addressing, where $n<m$, deals with collisions by finding an alternate location.
- Perfect hashing deals with collisions by preventing them altogether.

This topic is parallel with the optimal BST problem: What if we knew the keys ahead of time? What if we got to choose the hash function based on what keys we have?

Let \mathscr{H} stand for a class of hash functions（a set of hash functions defined by some formula）．

Let m be the number of buckets．
\mathscr{H} is universal if
$\forall k, \ell \in$ Keys，$|\{h \in \mathscr{H} \mid h(k)=h(\ell)\}| \leq \frac{|\mathscr{H}|}{m}$
\mathscr{H} is universal if

$$
\forall k, \ell \in \text { Keys, } \quad|\{h \in \mathscr{H} \mid h(k)=h(\ell)\}| \leq \frac{|\mathscr{H}|}{m}
$$

\mathscr{H} is universal if

$$
\forall k, \ell \in \text { Keys, } \quad|\{h \in \mathscr{H} \mid h(k)=h(\ell)\}| \leq \frac{|\mathscr{H}|}{m}
$$

One particular family of classes of hash functions, given p, a prime number greater than all keys, and m, the number of buckets, is denoted $\mathscr{H}_{m p}$:

$$
\mathscr{H}_{m p}=\left\{h_{a b}(k)=((a k+b) \bmod p) \bmod m \mid a \in[1, p) \text { and } b \in[0, p)\right\}
$$

Theorem $\mathscr{H}_{p m}$ is universal.
Proof. Suppose p and m as specified earlier. Suppose $k, \ell \in$ Keys, and $h_{a b} \in \mathscr{H}_{p m}$ (which implies supposing that $a \in[1, p$) and $b \in[0, p)$).
Let $r=(a \cdot k+b) \bmod p$ and $s=(a \cdot \ell+b) \bmod p$
Subtracting gives us

$$
\begin{aligned}
r-s & \equiv(a \cdot k+b)-(a \cdot \ell+b) & & \bmod p \\
& \equiv a \cdot(k-\ell) & & \bmod p
\end{aligned}
$$

Now a cannot be 0 because $a \in[1, p)$. Similarly $k-\ell$ cannot be 0 , since $k \neq \ell$. Hence a $\cdot(k-\ell) \neq 0$.
Since p is prime and greater than a, k, and ℓ, it cannot be a factor of $a \cdot(k-\ell)$. In other words, $a \cdot(k-\ell) \bmod p \neq 0$. By substitution, $r-s \neq 0$, and so $r \neq s$.
By another substitution, $(a \cdot k+b) \bmod p \neq(a \cdot \ell+b) \bmod p$.

Define the following function, given k and ℓ, which maps from (a, b) pairs to (r, s) pairs $($ formally, $[1, p) \times[0, p) \rightarrow[1, p) \times[0, p)$):

$$
\phi_{k \ell}(a, b)=((a \cdot k+b) \quad \bmod p,(a \cdot \ell+b) \bmod p)
$$

Now consider the inverse of that function.

$$
\begin{aligned}
\phi_{k \ell}^{-1}(r, s) & \left.=\left(\left((r-s) \cdot(k-\ell)^{-1}\right) \bmod p\right),(r-a k) \bmod p\right) \\
& =(a, b)
\end{aligned}
$$

The existence of ϕ^{-1} implies that ϕ is a one-to-one correspondence. Hence for each (a, b) pair, there is a unique (r, s) pair. Since the pair (a, b) specifies a hash function, that means that for each hash function in the family $\mathscr{H}_{p m}$, there is a unique (r, s) pair.

There are $p-1$ possible choices for a and p choices for b, so there are $p \cdot(p-1)$ hash functions in family $\mathscr{H}_{p m}$. Likewise there are p choices for r, and for each r there are $p-1$ choices for s (since $s \neq r$). Thus we can partition the set $\mathscr{H}_{p m}$ into p subsets by r value, each subset having $p-1$ hash functions. For a given r, at most one out of every m can have an s that is equivalent to r mod m, in other words, at most $\frac{p-1}{m}$ hash functions.
Now sum that for all p of the subsets of $\mathscr{H}_{p m}$, and we find that the number of hash functions for which k and ℓ collide are

$$
p \cdot \frac{p-1}{m}=\frac{p \cdot(p-1)}{m}=\frac{\left|\mathscr{H}_{p m}\right|}{m}
$$

Therefore $\mathscr{H}_{p m}$ is universal by definition.

Theorem [Probability of any collisions.] If Keys is a set of keys, $m=\mid$ Keys $\left.\right|^{2}, p$ is a prime greater than all keys, and $h \in \mathscr{H}_{p m}$, then the probability that any two distinct keys collide in h is less than $\frac{1}{2}$.

Proof. Suppose we have a set Keys, $m=\mid$ Keys $\left.\right|^{2}$, p is a prime greater than all keys, and $h \in \mathscr{H}_{p m}$.
Consider the number of pairs of unique keys. The number of pairs of keys is

$$
\binom{n}{2}=\frac{n!}{2!\cdot(n-2)!}=\frac{n!}{2 \cdot(n-2)!}=\frac{n \cdot(n-1) \cdot(n-2)!}{2 \cdot(n-2)!}=\frac{n \cdot(n-1)}{2}
$$

Since $\mathscr{H}_{p m}$ is universal, each pair collides with probability $\frac{1}{m}$. Multiply that by the number of pairs, and the expected number of collisions is

$$
\begin{aligned}
\frac{n \cdot(n-1)}{2} \cdot \frac{1}{m} & <\frac{n^{2}}{2} \cdot \frac{1}{m} & & \text { since } n \cdot(n-1)<n^{2} \\
& =\frac{n^{2}}{2} \cdot \frac{1}{n^{2}} & & \text { since } m=n^{2} \\
& =\frac{1}{2} & & \text { by cancelling } n^{2}
\end{aligned}
$$

With the expected number of collisions less than one half, the probability there are any collisions is also less than $\frac{1}{2}$.

$$
h(k)=(93,0) \in \mathscr{H}_{10110}
$$

Coming up:

Do Open Addressing Hashtable project (suggested by Today, Apr 18) Do Perfect hashing project (suggested by Wed, Apr 27)

Due Today, Apr 18 (end of day)
Read Sections 7.(4 \& 5)
(No practice problems or quiz)
Due Thurs, Apr 21 (end of day)
Read Section 7.6
Take quiz
Due Fri, Apr 22 (end of day)
Read Section 8.1
(Accompanying practice problem and quiz due next week Monday)

