
Chapter 6, Hash tables:

I General introduction; separate chaining (week-before Friday)

I Open addressing (last week Monday)

I Hash functions (last week Wednesday)

I Perfect hashing (Today)

I Hash table performance (Wednesday)

I (Start Ch 7, Strings, Friday)

In this video:
I Perfect hashing anticipated

I Motivation
I Goals

I Perfect hashing accomplished
I Definition of universal hashing
I Hash function class Hpm

I Theorems and proofs

I Perfect hashing applied
I The design of a perfect hashing scheme
I The given code for the project



A hashing scheme must reduce the occurrence of collisions and “deal” with them when
they happen.

I Separate chaining, where m < n, deals with collisions by chaining keys together in
a bucket.

I Open addressing, where n < m, deals with collisions by finding an alternate
location.

I Perfect hashing deals with collisions by preventing them altogether.

This topic is parallel with the optimal BST problem: What if we knew the keys ahead
of time? What if we got to choose the hash function based on what keys we have?



g ◦ f (x)

f (x)

g(x)

Let H stand for a class of hash functions (a
set of hash functions defined by some formula).

Let m be the number of buckets.

H is universal if

∀ k , ` ∈ Keys, |{h ∈H | h(k) = h(`)}| ≤ |H |
m
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One particular family of classes of hash functions, given p, a prime number greater
than all keys, and m, the number of buckets, is denoted Hmp:

Hmp = { hab(k) = ((ak + b) mod p) mod m | a ∈ [1, p) and b ∈ [0, p)}



Theorem Hpm is universal.

Proof. Suppose p and m as specified earlier. Suppose k, ` ∈ Keys, and
hab ∈Hpm (which implies supposing that a ∈ [1, p) and b ∈ [0, p)).
Let r = (a · k + b) mod p and s = (a · `+ b) mod p
Subtracting gives us

r − s ≡ (a · k + b)− (a · `+ b) mod p
≡ a · (k − `) mod p

Now a cannot be 0 because a ∈ [1, p). Similarly k − ` cannot be 0, since
k 6= `. Hence a · (k − `) 6= 0.
Since p is prime and greater than a, k, and `, it cannot be a factor of a ·(k−`).
In other words, a · (k − `) mod p 6= 0. By substitution, r − s 6= 0, and so
r 6= s.
By another substitution, (a · k + b) mod p 6= (a · `+ b) mod p.



Define the following function, given k and `, which maps from (a, b) pairs to
(r , s) pairs (formally, [1, p)× [0, p)→ [1, p)× [0, p)):

φk`(a, b) = ((a · k + b) mod p, (a · `+ b) mod p)

Now consider the inverse of that function.

φ−1
k` (r , s) = (((r − s) · (k − `)−1) mod p), (r − ak) mod p)

= (a, b)

The existence of φ−1 implies that φ is a one-to-one correspondence. Hence
for each (a, b) pair, there is a unique (r , s) pair. Since the pair (a, b) specifies
a hash function, that means that for each hash function in the family Hpm,
there is a unique (r , s) pair.



There are p−1 possible choices for a and p choices for b, so there are p ·(p−1)
hash functions in family Hpm. Likewise there are p choices for r , and for each
r there are p − 1 choices for s (since s 6= r). Thus we can partition the set
Hpm into p subsets by r value, each subset having p − 1 hash functions.
For a given r , at most one out of every m can have an s that is equivalent to
r mod m, in other words, at most p−1

m hash functions.
Now sum that for all p of the subsets of Hpm, and we find that the number
of hash functions for which k and ` collide are

p · p − 1

m
=

p · (p − 1)

m
=
|Hpm|
m

Therefore Hpm is universal by definition. �



Theorem [Probability of any collisions.] If Keys is a set of keys, m = |Keys|2, p is a
prime greater than all keys, and h ∈Hpm, then the probability that any two distinct
keys collide in h is less than 1

2 .

Proof. Suppose we have a set Keys, m = |Keys|2, p is a prime greater than
all keys, and h ∈Hpm.
Consider the number of pairs of unique keys. The number of pairs of keys is

(
n

2

)
=

n!

2! · (n − 2)!
=

n!

2 · (n − 2)!
=

n · (n − 1) ·����(n − 2)!

2 ·����(n − 2)!
=

n · (n − 1)

2



Since Hpm is universal, each pair collides with probability 1
m . Multiply that by

the number of pairs, and the expected number of collisions is

n·(n−1)
2 · 1

m < n2

2 ·
1
m since n · (n − 1) < n2

= n2

2 ·
1
n2

since m = n2

= 1
2 by cancelling n2

With the expected number of collisions less than one half, the probability there
are any collisions is also less than 1

2 . �
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h1(k) = (0, 0) ∈H101 0

h2(k) = (56, 15) ∈H101 9

h3(k) = (47, 22) ∈H101 4

h6(k) = (1, 100) ∈H101 4

h7(k) = (0, 0) ∈H101 0

h8(k) = (0, 0) ∈H101 0

h(k) = (93, 0) ∈H101 10



Coming up:

Do Open Addressing Hashtable project (suggested by Today, Apr 18) Do
Perfect hashing project (suggested by Wed, Apr 27)

Due Today, Apr 18 (end of day)
Read Sections 7.(4 & 5)
(No practice problems or quiz)

Due Thurs, Apr 21 (end of day)
Read Section 7.6
Take quiz

Due Fri, Apr 22 (end of day)
Read Section 8.1
(Accompanying practice problem and quiz due next week Monday)


