
Chapter 5, Binary search trees:

I Binary search trees; the balanced BST problem (spring-break eve; finishing
Monday)

I AVL trees (Monday and Today)

I Traditional red-black trees (Friday)

I Left-leaning red-black trees (next week Monday)

I “Wrap-up” BST (next week Wednesday)

Today:

I Practice problem

I Review of balanced BST problem, AVL concepts

I Review of AVL cases

I Proof of AVL correctness

I AVL performance

I Solution to practice problem



Ex 5.1. Write the method bst2Array(), which takes a simplified BST, represented
by the root node, and returns a sorted array containing the keys. The size of the array
should be the number of keys, and when given a null node, the method should return
an array of size 0. Test using BST2ATest. Hint: You may want to write one or more
recursive helper methods.

public class BSTNode {

public final int key;

public final BSTNode left, right;

public BSTNode(int key, BSTNode left, BSTNode right) {

this.key = key;

this.left = left;

this.right = right;

}

}



I The BST data structure supports the map ADT with Θ(lg n) operations, as long
as the tree is balanced.

I Perfect balance isn’t necessary. The trees need only be “pretty balanced.”
I Schemes for keeping trees have a tradeoff between time spent rebalancing vs the

benefit of having the tree more balanced. Each scheme needs to ask
I How do we define and measure “balance”?
I What information needs to be stored for that measure?
I How imbalanced is too imbalanced?
I What sequence of rotations are needed to fix up the tree when it becomes too

imbalanced?



(1)

[1]

(2)

(4)

[−1]

[0]

[0]

(1)

[0]

(1)

[0]

(1)

[0]

(1)

[1]

(2)

[1]

(3) (2)

[−1]

(3)

[1]

[1]

(5)

K

G R

C I P U

B E H J M Q S V

A F L O T

0 0

11

1

2

1 1

1

1 1

1 1

2

0

1 1

2

2

3

B

C

D

E G

H J

I K

L

M

N

O

P

QA

L

D P

B J

C H K

N

M O

Q

IG

E

A

2 7 8 91 3 4 5 11 12 13 1516 17 18

1914106

20 2122



The height of a node (or (sub)tree) is the number of nodes on any path from that
node to any leaf, inclusive.

height(c) =

{
0 if c is null
max(height(c .`) + height(c .r)) + 1 otherwise

The balance of a node is the difference between the heights of its left and right
children. In an AVL tree, each node’s subtrees’ heights must differ by at most 1:

∀ x ∈ nodes, |height(x .left)− height(x .right)| ≤ 1

A node that has balance 1 or -1 has a bias. A node that (temporarily) has balance 2 or
-2 is in violation.

(A balance less than -2 or greater than 2 shouldn’t happen even temporarily.)



(1)

[1]

(2)

(4)

[−1]

[0]

[0]

(1)

[0]

(1)

[0]

(1)

[0]

(1)

[1]

(2)

[1]

(3) (2)

[−1]

(3)

[1]

[1]

(5)



A

α
(h)

(h+3)

[−2]

C

β γ

δ
(h)

[1]
(h+2)

(h−1 or h) (h−1 or h)

(h+1)

[−1 or 0 or 1]

A

α

[−2]

(h)

(h+3)

B C

B

β

γ δ

(h+2)

(h−1 or h)

(h−1 or h) (h)

[−1 or 0]

(h+1)

[−2 or −1]

C

B

β

γ δ

(h+2)

(h−1 or h) (h)

[−1 or 0]

(h+1)

[−2 or −1 or 0]

C

α β γ

B

δ

(h+1)

[−1 or 0]

[0 or 1]

[−1 or 0 or 1]

(h+1 or h+2)A

A

α
(h)

(h+3)

[−2]

(h+2 or h+3)

(h−1 or h or h+1) (h−1 or h) (h)(h)
(h−1 or h or h+1)

Right−Left:

Right−Right:

rotate

through

fall

rotate



Invariant 30 (Postconditions of RealNode.put() with AVLBalancer.)
Let x be the root of a subtree on which put() is called and y be the node returned,
that is, the root of the resulting subtree. The subtree rooted at y has no violations and
the height of the subtree rooted at y is equal to or one greater than the original height
of the subtree rooted at x .

Proof. Suppose put() is called on node x in a BST using AVL balancing
which has no violations. There are three cases: x is nully, x is a RealNode

containing the key being searched for, or x is a RealNode with a different key.
We use structural induction with the first two cases as base cases.



Base case 1. Suppose x is nully, which has height 0 Then the node y
returned is a new RealNode with nully as both children, height 1, and balance
0. The subtree rooted at y has no violations and height one greater than the
original height of x .

Base case 2. Suppose x is a RealNode whose key is equal to the key used
for this put(). Then the value at node x is overwritten but node x itself is
returned (so y = x in this case) with the tree structure unchanged.

Inductive case. Suppose x is a RealNode and, without loss of generality, the
key used for this put() is greater than the key at x , and so put() is called on
the right child of x . Let h0 be the height of the tree rooted at x before this
call to put() on the right child, and let z the root of the subtree that results
from this call to put() on the right child. Our inductive hypothesis is that
the subtree rooted at z has no violations and that its height is equal to or one
greater than the height of the original right child of x .



Let h1 be the height of the tree rooted at x after the call to put() on the
right child but before the call to putFixup() with x . Since since at most the
height of its right subtree has increased by one, either h1 = h0 or h1 = h0 + 1.

By supposition, the balance of x before the call to put() was no less than −1,
since we supposed the tree had no violations. Since at most the height of its
right subtree has increased by one, the balance of x is now no less than −2.
We now have two subcases: Either the balance of x is greater than −2 or it is
equal to −2.

Suppose the balance of x is greater than −2. Then the call to putFixup()

with x returns x unchanged, which is also returned as the result of put()

(again y = x), a tree with no violations and height h1.

On the other hand, suppose the balance of x is equal to −2. Then y is a node
other than x returned by putFixup(). Let h2 be the height of the subtree
rooted at y when putFixup() returns. By inspection of the right-right and
right-left subcases given above, the subtree rooted at y has no violations and
either h2 = h1 or h2 = h1− 1. In either of those cases h2 = h0 or h2 = h0 + 1.
�



Let Ah be an AVL tree of height h with minimal number of nodes.

A1 A2 A3

A4 A5 Ah

Ah−2 Ah−1



Let Bh be the number of nodes in Ah.

Bh =


1 if h = 1

2 if h = 2

Bh−2 + Bh−1 + 1 otherwise

Bh+1 =


2 if h = 1

3 if h = 2

(Bh−2 + 1) + (Bh−1 + 1) otherwise

h 1 2 3 4 5 6

Bh + 1 2 3 5 8 13 21
Bh 1 2 4 7 12 20



Bh + 1 = fib(h + 2). Moreover, fib(i) = [ φi
√
5

], and φ = 1+
√
5

2

Bh + 1 > φh+2
√
5
− 1

Bh + 2 > φh+2
√
5

√
5(Bh + 2) > φh+2

h + 2 < logφ(
√

5Bh)

h < logφ(
√

5Bh)− 2

= logφ Bh + logφ
√

5− 2

= 1
lg φ lgBh + logφ

√
5− 2



Coming up:

Do BST rotations project (suggested by Wednesday, Mar 16)

Do AVL project (suggested by Monday, Mar 212)

Due Wed, Mar 23 (end of day) (but spread it out)
Read Sections 5.(4-6) [some parts carefully, some parts skim, some parts
optional—see Schoology]
Do Exercise 5.14
Take quiz


