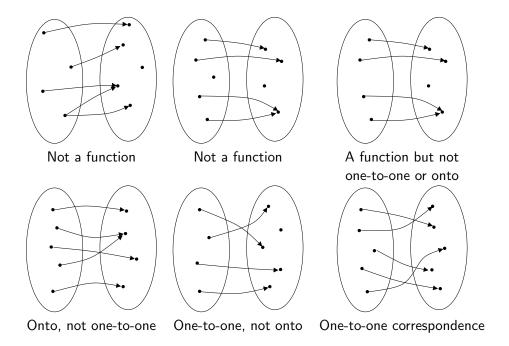
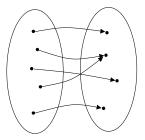
Chapter 7 outline:

- ▶ Introduction, function equality, and anonymous functions (last week Monday)
- Image and inverse images (last week Wednesday)
- ► Function properties, composition, and applications to programming (Monday)
- Function composition (**Today, i.e. Wednesday**)
- Cardinality (Today, i.e. Friday)
- Practice quiz and Countability (next week Monday)
- Review (next week Wednesday)
- ► Test 3, on Ch 6 & 7 (next week Friday)

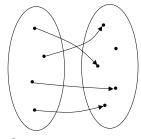
Today:

- Formal definition of cardinality
- ▶ If $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$
- ▶ If $f: A \rightarrow B$ is one-to-one, then $|A| \leq |B|$.

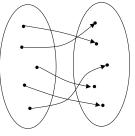




Onto, not one-to-one $|X| \ge |Y|$



One-to-one, not onto $|X| \leq |Y|$



One-to-one correspondence |X| = |Y|

Two finite sets X and Y have the *the same cardinality* as each other if there exists a one-to-one correspondence from X to Y.

To use this *analytically*:

Suppose X and Y have the same cardinality. Then let f be a one-to-one correspondence from X to Y.

f is both onto and one-to-one.

To use this synthetically:

Given sets X and Y ...

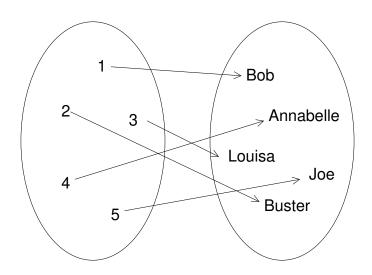
[Define f**]** Let $f: X \to Y$ be a function defined as ...

Suppose $y \in Y$. Somehow find $x \in X$ such that f(x) = y. Hence f is onto.

Suppose $x_1, x_2 \in X$ such that $f(x_1) = f(x_2)$. Somehow show $x_1 = x_2$. Hence f is one-to-one.

Since f is a one-to-one correspondence, X and Y have the same cardinality as each other.

A finite set X has cardinality $n \in \mathbb{N}$, which we write as |X| = n, if there exists a one-to-one correspondence from $\{1, 2, \dots n\}$ to X. Moreover, $|\emptyset| = 0$.

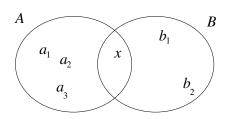


Theorem 7.12. If A and B are finite, disjoint sets, then $|A \cup B| = |A| + |B|$.

Theorem 7.13. If A and B are finite sets and $f: A \to B$ is one-to-one, then $|A| \le |B|$.

Exercise 7.9.5. If A and B are finite sets and $f: A \to B$ is onto, then $|A| \ge |B|$.

$A \cap B = \emptyset \quad \rightarrow \quad |A \cup B| = |A| + |B|$

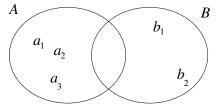


$$|A \cup B| = |\{a_1, a_2, a_3, x, b_1, b_2\} = 6$$

$$|A| + |B| =$$

$$= |\{a_1, a_2, a_3, x\}| + |\{x, b_1, b_2\}|$$

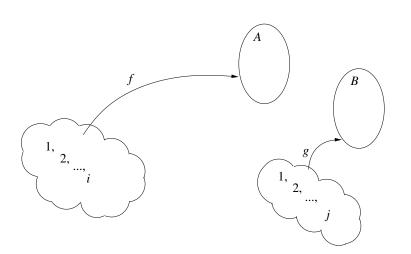
$$= 4 + 3 = 7$$



$$|A \cup B| = |\{a_1, a_2, a_3, b_1, b_2\} = 5$$

 $|A| + |B| =$
 $= |\{a_1, a_2, a_3\}| + |\{b_1, b_2\}|$
 $= 3 + 2 = 5$

$$A \cap B = \emptyset \quad \rightarrow \quad |A \cup B| = |A| + |B|$$

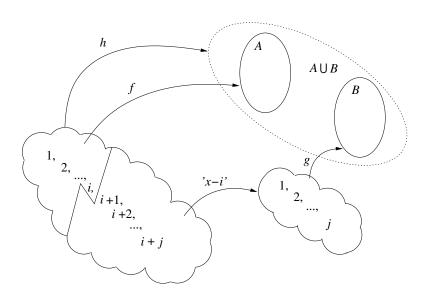


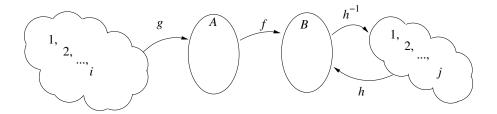
$$A \cap B = \emptyset \quad \rightarrow \quad |A \cup B| = |A| + |B|$$

X	f	X	g
1	Zed	1	Wilhelmina
2	Yelemis	2	Valerie
3	Xavier	3	Ursula
		4	Tassie

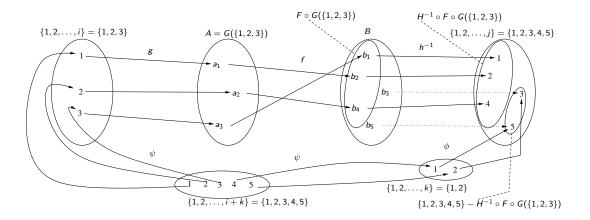
X	h				
1	f(1)	=	Zed		
2	f(2)	=	Yelemis		
3	f(3)	=	Xavier		
4	g(4-3)	=	g(1)	=	Wilhelmina
5	g(5-3)	=	g(2)	=	Valerie
6	g(6-3)	=	g(3)	=	Ursula
7	g(7-3)	=	g(4)	=	Tassie

$A \cap B = \emptyset \quad \rightarrow \quad |A \cup B| = |A| + |B|$





$f: A \to B$ is one-to-one $\to |A| \le |B|$



For next time:

Pg 359: 7.9.(1 & 2)