So far, we have seen

- Defining types and sets recursively.
- Proving propositions quantified over recursively defined sets using structural induction.
- Proving propositions quantified over \mathbb{W} or \mathbb{N} using mathematical induction. Specifically, to prove $\forall n \in \mathbb{W}, I(n)$,
- Prove I(0)
- Prove $\forall n \in \mathbb{W}, I(n) \rightarrow I(n+1)$

Today and Wednesday are about

- Proving the correctness of algorithms using mathematical induction

For next time:
Take quiz (on loop invariants)
For Monday, Apr 3:
Pg 306: 6.10.(2-5)
Read 7 intro and 7.1 carefully
Read 7.2
Skim 7.3
Take quiz (on function introduction)

For any full binary tree T, nodes (T) id odd.
Proof. By induction on the structure of T.
Base case. Suppose T is a leaf. Then nodes $(T)=1$ by the definition of nodes. Moreover, $\operatorname{nodes}(T)=1=2 \cdot 0+1$, and so node (T) is odd by definition.
Inductive case. Suppose T is an internal node with children T_{1} and T_{2} such that nodes $\left(T_{1}\right)$ and nodes $\left(T_{2}\right)$ are each odd.
[By definition of odd, there exist x and y such that nodes $\left(T_{1}\right)=2 x+1$ and $\operatorname{nodes}\left(T_{2}\right)=2 y+1$.]
Then,

$$
\begin{array}{rlrl}
\operatorname{nodes}(T) & =1+\operatorname{nodes}\left(T_{1}\right)+\operatorname{nodes}\left(T_{2}\right) & & \begin{array}{l}
\text { By the definition of nodes } \\
\\
\end{array} \\
& =1+2 x+1+2 y+1 & \begin{array}{l}
\text { for some } x \text { and } y \\
\text { by the definition of odd }
\end{array} \\
& =2(x+y+1)+1 & & \begin{array}{l}
\text { and the inductive hypothesis } \\
\text { by algebra }
\end{array}
\end{array}
$$

And hence nodes (T) is odd by definition of odd. [Therefore, by the principle of structural induction, for any full binary tree T, nodes(T) id odd.] \square

For any full binary tree $T, \operatorname{nodes}(T)=2 * \operatorname{internals}(T)+1$.
Proof. By induction on the structure of T.
Base case. Suppose T is a leaf. By definition of internals, internals $(T)=0$. Moreover, by definition of nodes, $\operatorname{nodes}(T)=1=2 \cdot 0+1=2 \cdot \operatorname{internals}(T)+1$.
Inductive case. Suppose T is an internal node with children T_{1} and T_{2} such that nodes $\left(T_{1}\right)=2 \cdot \operatorname{internals}\left(T_{1}\right)+1$ and similarly for T_{2}.
Then,

$$
\begin{aligned}
\operatorname{nodes}(T) & =1+\operatorname{nodes}\left(T_{1}\right)+\operatorname{nodes}\left(T_{2}\right) & & \text { by definition of nodes } \\
& =1+2 \cdot \operatorname{internals}\left(T_{1}\right)+1+2 \cdot \operatorname{internals}\left(T_{2}\right)+1 & & \text { by the inductive hypothesis } \\
& =2\left(1+\operatorname{internals}\left(T_{1}\right)+\operatorname{internals}\left(T_{2}\right)\right)+1 & & \text { by algebra } \\
& =2 \text { internals }(T)+1 & & \text { by definition of internals }
\end{aligned}
$$

[Therefore, by the principle of structural induction, for any full binary tree $T, \operatorname{nodes}(T)=$ $2 *$ internals $(T)+1.] \square$

For any full binary tree T, height $(T) \leq \operatorname{links}(T)$.
Proof. By induction on the structure of T.
Base case. Suppose T is a leaf. By definition of height and links, height $(T)=0 \leq 0=$ links(T).
Inductive case. Suppose T is an internal node with children T_{1} and T_{2} such that height $\left(T_{1}\right) \leq \operatorname{links}\left(T_{1}\right)$ and similarly for T_{2}.
[By definition of height and links, height $(T)=1+\max \left(\operatorname{height}\left(T_{1}\right)\right.$, $\left.\operatorname{height}\left(T_{2}\right)\right)$ and links $(T)=2+\operatorname{links}\left(T_{1}\right)+\operatorname{links}\left(T_{2}\right)$.]
Then

$$
\begin{array}{rlr}
\text { height }(T) & =1+\max \left(\operatorname{height}\left(T_{1}\right), \text { height }\left(T_{2}\right)\right) & \\
& \text { by definition of height } \\
& \leq 1+\max \left(\operatorname{links}\left(T_{1}\right), \operatorname{links}\left(T_{2}\right)\right) & \text { by the inductive hypothesis } \\
& \leq 1+\operatorname{links}\left(T_{1}\right)+\operatorname{links}\left(T_{2}\right) & \text { since the sum of nonnegatives is geq their max } \\
& <2+\operatorname{links}\left(T_{1}\right)+\operatorname{links}\left(T_{2}\right) & \text { since } 1<2
\end{array}
$$

[Therefore, by the principle of structural induction, for any full binary tree T, height $(T) \leq$ links(T).]

$$
n!=\left\{\begin{array}{llr}
1 & \text { if } n=0 & \text { fun factorial }(0)=1 \\
n \cdot(n-1)! & \text { otherwise } & \mid \text { factorial }(\mathrm{n})=\mathrm{n}
\end{array} * \text { factorial }(\mathrm{n}-1) ;\right.
$$

Theorem 6.6. For all $n \in \mathbb{W}$, factorial $(n)=n!$

Proof. By induction on n.
Base case. Suppose $n=0$. By definition of factorial, $\mathrm{factorial}(0)=1=0$!, by definition of !. Hence there exists an $N \geq 0$ such that factorial $(N)=N$!.
Inductive case. Suppose $N \geq 0$ such that factorial $(N)=N$!, and suppose $n=N+1$. Then

$$
\begin{aligned}
\text { factorial }(n) & =n \cdot f a c t o r i a l(n-1) & & \text { by definition of factorial } \\
& =n \cdot f \text { actorial }(N) & & \text { by algebra and substitution } \\
& =n \cdot N! & & \text { by the inductive hypothesis } \\
& =n! & & \text { by definition of ! }
\end{aligned}
$$

Therefore, by math induction, factorial is correct for all $n \in \mathbb{W}$.

What does correctness mean for an algorithm?
The outcome/result must aways match the specification. For arithSum, the specification is

$$
\operatorname{arithSum}(N)=\sum_{k=1}^{N} k
$$

To prove this, we need to reason about the change of state of the computation.
The state of the computation is represented by the values of the variables.

We can reason about a single line of code in terms of preconditions and postconditions.
Suppose the preconditions include $x=5$.

$$
y:=x+1
$$

Then the postconditions include

- $y=6$
- $x=5$
- $x=y-1$
- $G=6.674 \times 10^{-11} \frac{\mathrm{~m}^{3}}{\mathrm{~kg} \mathrm{~s}^{2}}$
fun remainder $(\mathrm{a}, \mathrm{b})=$
let

Suppose $a, b \in \mathbb{Z}$
$\operatorname{val} \mathrm{q}=\mathrm{a} \operatorname{div} \mathrm{b}$;
$q=a \operatorname{div} b$ by assignment. By the QRT (Thm 4.21) and the definition of division, $a=b \cdot q+R$ for some R, $0 \leq R<b$. Then by algebra, $q=\frac{a-R}{b}$.
$\operatorname{val} \mathrm{p}=\mathrm{q} * \mathrm{~b}$;
$p=q \cdot b$ by assignment, and $p=a-R$ by substitution and algebra.
val $r=a-p ;$
By assignment, $r=a-p$. By substitution and algrebra, $r=a-(a-R)=R$.
in
r
end;
Since r is the value returned and is equal to the specified result R, this program returns the correct result.

For arithSum, N is the limit on the summation. Let n be the number of iterations so far. Our claim is

$$
\text { After } n \text { iterations, } s=\sum_{k=1}^{n} k
$$

Notice

- After 0 iterations, $s=0$ and $\sum_{k=1}^{0} k=0$. Our claim is true before we start.
- Each iteration changes the state, but maintains the fact above (or, so we claim).
- When we're done, that's N iterations, so $\sum_{k=1}^{n} k=\sum_{k=1}^{N} k$ (or, so we claim).

Refining the claim:

$$
\forall n \in \mathbb{W} \text {, after } n \text { iterations } s=\sum_{k=1}^{n} k \text { and } i=n+1
$$

Theorem. $\operatorname{arithSum}(\mathrm{N})$ returns $\sum_{k=1}^{N} k$.
Lemma. $\forall n \in \mathbb{W}$, after n iterations, $s=\sum_{k=1}^{n} k$ and $i=n+1$.
Proof (of lemma). By induction on the number of iterations, n.
Initialization. After 0 iterations, $s=0=\sum_{k=1}^{0} k$ by assignment, arithmetic, and definition of summation. $i=1=0+1$, by assignment and arithmetic. Maintenance. Suppose after $n \geq 0$ iterations, $s=\sum_{k=1}^{n} k$ and $i=n+1$. Let $s_{\text {old }}$ be s after n iterations and $s_{\text {new }}$ be s after $n+1$ iterations. Similarly define $i_{\text {old }}$ and $i_{\text {new }}$. Then

$$
\begin{aligned}
s_{\text {new }} & =s_{\text {old }}+i_{\text {old }} & & \text { by assignment } \\
& =\left(\sum_{k=1}^{n} k\right)+n+1 & & \text { by the inductive hypothesis } \\
& =\sum_{k=1}^{n+1} k & & \text { by the definition of summation } \\
i_{\text {new }} & =i_{\text {old }}+1 & & \text { by assignment } \\
& =n+1+1 & & \text { by the inductive hypothesis } \\
& =(n+1)+1 & & \text { by associativity }
\end{aligned}
$$

Therefore the invariant holds.

Theorem. $\operatorname{arithSum}(\mathrm{N})$ returns $\sum_{k=1}^{N} k$.
Lemma. $\forall n \in \mathbb{W}$, after n iterations, $s=\sum_{k=1}^{n} k$ and $i=n+1$.
Proof (of theorem). Suppose $N \in \mathbb{W}$ is the input to arithSum.
Termination. The lemma tells us that after N iterations, $i=N+1 \not \leq N$, so the guard fails and the loop terminates.
At loop exit, $s=\sum_{k=1}^{N} k$, which is return.
Therefore the program arithSum is correct.

Principles of using loop invariants to prove correctness

- A loop invariant is a proposition that is true before and after each iteration of a loop, including before the entire loop starts and after it terminates. A useful loop invariant captures an aspect of the progress of the loop's work.
- The steps in a loop invariant proof, to prove and apply something in the form, $" \forall n \in \mathbb{W}$, after n iterations,"
- Initialization. Prove that the property is true before the loop starts, that is, after 0 iterations. This is the base case in the inductive proof.
- Maintenance. Prove that if the property is true before an iteration, then it is true after that iteration. This is the inductive case of the inductive proof.
- Termination. Prove that the loop will terminate, and then apply the loop invariant to deduce a postcondition for the entire loop.

After n iterations, x is even.

Proof. By induction on the number of iterations.
Initialization. Before the loop starts, $x=0$ by assignment. Moreover, $x=2 \cdot 0$, so x is even by definition.
Maintenance. Suppose that after n iterations x is even, for some $n \geq 0$. Let $x_{\text {old }}$ and $x_{\text {new }}$ be x after n and $n+1$ iterations, respectively.
$x_{\text {old }}=2 j$ for some $j \in \mathbb{Z}$ by the inductive hypothesis and definition of even. Then

$$
\begin{aligned}
x_{\text {new }} & =x_{\text {old }}+2 i & \text { by assignment } \\
& =2 j+2 i & \text { by substitution } \\
& =2(j+i) & \text { by algebra }
\end{aligned}
$$

Hence $x_{\text {new }}$ is even by definition.
Therefore, by the principle of mathematical induction, that x is even is a loop invariant.

After n iterations, $a=x^{n}$ and $i=y-n$.
Proof. By induction on the number of iterations.
Initialization. Suppose $n=0$, that is, the conditions before the loop starts. Then $a=1$ by assignment, and hence $a=x^{0}=x^{n}$ by algebra. Similarly, $i=y$ by assignment, and hence $i=y-0=y-n$ by algebra.

```
fun pow(x, y) =
    let
        val a = ref 1;
        val i = ref y;
    in
        (while !i > 0 do
            (i := !i - 1;
                a := !a * x);
```

 !a)
 end;

Maintenance. Suppose that $a=x^{n}$ and $i=y-n$ after n iterations for some $n \geq 0$. Let $a_{\text {old }}, a_{\text {new }}, i_{\text {old }}$, and $i_{\text {new }}$ be defined in the usual way. Then

$$
\begin{aligned}
i_{\text {new }} & =i_{\text {old }}-1 & & \text { by assignment } \\
& =y-n-1 & & \text { by the inductive hypothesis } \\
& =y-(n+1) & & \text { by algebra } \\
a_{\text {new }} & =a_{\text {old }} \cdot x & & \text { by assignment } \\
& =x^{n} \cdot x & & \text { by the inductive hypothesis } \\
& =x^{n+1} & & \text { by algebra }
\end{aligned}
$$

Therefore, by the principle of mathematical induction, $a=$ x^{n} and $i=y-n$, where n is the number of iterations completed, is a loop invariant.

After n iterations, $x+y=m$.

```
fun xxx(m) =
    let
        val x = ref m;
        val y = ref 0;
        val i = ref 1;
    in
        (while !i < m div 2 do
            (x := !x - i;
            y := !y + i;
            i := !i * 2);
        !x - !y)
    end;
```

After n iterations, $x+y=m$.
Proof. By induction on the number of iterations.

```
```

fun xxx(m) =

```
```

fun xxx(m) =
let
let
val x = ref m;
val x = ref m;
val y = ref 0;
val y = ref 0;
val i = ref 1;
val i = ref 1;
in
in
(while !i < m div 2 do
(while !i < m div 2 do
(x := !x - i;
(x := !x - i;
y := !y + i;
y := !y + i;
i := !i * 2);
i := !i * 2);
!x - !y)
!x - !y)
end;

```
```

 end;
    ```
```

After n iterations, $x+y=m$.
Proof. By induction on the number of iterations.

```
fun xxx(m)=
    let
        val x = ref m;
        val y = ref 0;
        val i = ref 1;
    in
        (while !i < m div 2 do
            (x := !x - i;
            y := !y + i;
            i := !i * 2);
        !x - !y)
    end;
```

Initialization. Before the loop starts, $x=m$ and $y=0$ by assignment. Hence $x+y=m$ by algebra.

After n iterations, $x+y=m$.
Proof. By induction on the number of iterations.

```
fun xxx(m) =
    let
        val x = ref m;
        val y = ref 0;
        val i = ref 1;
    in
        (while !i < m div 2 do
            (x := !x - i;
            y := !y + i;
            i := !i * 2);
        !x - !y)
    end;
``` Initialization. Before the loop starts, \(x=m\) and \(y=0\) by assignment. Hence \(x+y=m\) by algebra. Maintenance Suppose \(x+y=m\) after \(n\) iterations for some \(n \geq 0\). Let \(x_{\text {old }}, x_{\text {new }}, y_{\text {old }}\), and \(y_{\text {new }}\) be defined in the usual way. Then

After \(n\) iterations, \(x+y=m\).
Proof. By induction on the number of iterations.
```

fun }\operatorname{xxx(m) =
let
val x = ref m;
val y = ref 0;
val i = ref 1;
in
(while !i < m div 2 do
(x := !x - i;
y := !y + i;
i := !i * 2);
!x - !y)
end;

```

Initialization. Before the loop starts, \(x=m\) and \(y=0\) by assignment. Hence \(x+y=m\) by algebra.
Maintenance Suppose \(x+y=m\) after \(n\) iterations for some \(n \geq 0\). Let \(x_{\text {old }}, x_{\text {new }}, y_{\text {old }}\), and \(y_{\text {new }}\) be defined in the usual way. Then
\[
\begin{aligned}
x_{\text {new }} & =x_{\text {old }}-i & & \text { by assignment } \\
y_{\text {new }} & =y_{\text {old }}+i & & \text { by assignment } \\
x_{\text {new }}+y_{\text {new }} & =x_{\text {old }}-i+y_{\text {old }}+i & & \text { by substitution } \\
& =x_{\text {old }}+y_{\text {old }} & & \text { by algebra } \\
& =m & & \text { by the inductive hypothesis }
\end{aligned}
\]

After \(n\) iterations, \(x+y=m\).
Proof. By induction on the number of iterations.
```

fun }\operatorname{xxx(m) =
let
val x = ref m;
val y = ref 0;
val i = ref 1;
in
(while !i < m div 2 do
(x := !x - i;
y := !y + i;
i := !i * 2);
!x - !y)
end;

```

Initialization. Before the loop starts, \(x=m\) and \(y=0\) by assignment. Hence \(x+y=m\) by algebra.
Maintenance Suppose \(x+y=m\) after \(n\) iterations for some \(n \geq 0\). Let \(x_{\text {old }}, x_{\text {new }}, y_{\text {old }}\), and \(y_{\text {new }}\) be defined in the usual way. Then
\[
\begin{aligned}
x_{\text {new }} & =x_{\text {old }}-i & & \text { by assignment } \\
y_{\text {new }} & =y_{\text {old }}+i & & \text { by assignment } \\
x_{\text {new }}+y_{\text {new }} & =x_{\text {old }}-i+y_{\text {old }}+i & & \text { by substitution } \\
& =x_{\text {old }}+y_{\text {old }} & & \text { by algebra } \\
& =m & & \text { by the inductive hypothesis }
\end{aligned}
\]

Therefore, by the principle of mathematical induction, \(x+\) \(y=m\) is a loop invariant.

Reminder: Ex 6.10.(2-5) for next time.
Also (very important):
- Read 7 intro and 7.1 carefully
- Read 7.2
- Skim 7.3
- Take quiz```

