So far, we have seen

- ▶ Defining types and sets recursively.
- Proving propositions quantified over recursively defined sets using structural induction.
- ▶ Proving propositions quantified over \mathbb{W} or \mathbb{N} using mathematical induction. Specifically, to prove $\forall n \in \mathbb{W}, I(n)$,
 - ▶ Prove *I*(0)
 - ▶ Prove $\forall n \in \mathbb{W}, I(n) \rightarrow I(n+1)$

Today and Wednesday are about

▶ Proving the correctness of algorithms using mathematical induction

For next time:

Take quiz (on loop invariants)

For Monday, Apr 3:

Pg 306: 6.10.(2-5)

Read 7 intro and 7.1 carefully

Read 7.2

Skim 7.3

Take quiz (on function introduction)

For any full binary tree T, nodes(T) id odd.

Proof. By induction on the structure of T.

Base case. Suppose T is a leaf. Then nodes(T) = 1 by the definition of nodes. Moreover, $nodes(T) = 1 = 2 \cdot 0 + 1$, and so node(T) is odd by definition.

Inductive case. Suppose T is an internal node with children T_1 and T_2 such that $nodes(T_1)$ and $nodes(T_2)$ are each odd.

[By definition of odd, there exist x and y such that $nodes(T_1) = 2x + 1$ and $nodes(T_2) = 2y + 1$.]

Then,

$$\operatorname{nodes}(T) = 1 + \operatorname{nodes}(T_1) + \operatorname{nodes}(T_2)$$
 By the definition of nodes
$$= 1 + 2x + 1 + 2y + 1$$
 for some x and y by the definition of odd and the inductive hypothesis
$$= 2(x + y + 1) + 1$$
 by algebra

And hence nodes(T) is odd by definition of odd.

[Therefore, by the principle of structural induction, for any full binary tree T, nodes(T) id odd.] \square

⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩ ⟨□⟩

For any full binary tree T, nodes(T) = 2 * internals(T) + 1.

Proof. By induction on the structure of T.

Base case. Suppose T is a leaf. By definition of internals, internals(T) = 0. Moreover, by definition of nodes, nodes $(T) = 1 = 2 \cdot 0 + 1 = 2 \cdot internals(T) + 1$.

Inductive case. Suppose T is an internal node with children T_1 and T_2 such that $nodes(T_1) = 2 \cdot internals(T_1) + 1$ and similarly for T_2 .

Then,

$$\begin{array}{lll} \operatorname{nodes}(T) & = & 1 + \operatorname{nodes}(T_1) + \operatorname{nodes}(T_2) & \text{by definition of nodes} \\ & = & 1 + 2 \cdot \operatorname{internals}(T_1) + 1 + 2 \cdot \operatorname{internals}(T_2) + 1 & \text{by the inductive hypothesis} \\ & = & 2(1 + \operatorname{internals}(T_1) + \operatorname{internals}(T_2)) + 1 & \text{by algebra} \\ & = & 2\operatorname{internals}(T) + 1 & \text{by definition of internals} \end{array}$$

[Therefore, by the principle of structural induction, for any full binary tree T, nodes(T) = 2*internals(T) + 1.] \square

For any full binary tree T, height(T) \leq links(T).

Proof. By induction on the structure of *T*.

Base case. Suppose T is a leaf. By definition of height and links, height(T) = $0 \le 0 = links(T)$.

Inductive case. Suppose T is an internal node with children T_1 and T_2 such that $\text{height}(T_1) \leq \text{links}(T_1)$ and similarly for T_2 .

[By definition of height and links, height(T) = 1 + max(height(T₁), height(T₂)) and links(T) = 2 + links(T₁) + links(T₂).]

Then

```
\begin{array}{lll} \operatorname{height}(T) & = & 1 + \max(\operatorname{height}(T_1), \operatorname{height}(T_2)) & \textit{by definition of height} \\ & \leq & 1 + \max(\operatorname{links}(T_1), \operatorname{links}(T_2)) & \textit{by the inductive hypothesis} \\ & \leq & 1 + \operatorname{links}(T_1) + \operatorname{links}(T_2) & \textit{since the sum of nonnegatives is geq their max} \\ & < & 2 + \operatorname{links}(T_1) + \operatorname{links}(T_2) & \textit{since 1} < 2 \end{array}
```

[Therefore, by the principle of structural induction, for any full binary tree T, height(T) \leq links(T).] \Box

$$n! = \left\{ \begin{array}{ll} 1 & \text{if } n = 0 \\ n \cdot (n-1)! & \text{otherwise} \end{array} \right. \quad \text{fun factorial(0) = 1} \\ \mid \text{ factorial(n) = n * factorial(n-1);} \end{array}$$

Theorem 6.6. For all $n \in \mathbb{W}$, factorial(n) = n!

Proof. By induction on n.

Base case. Suppose n=0. By definition of factorial, factorial(0) = 1 = 0!, by definition of!. Hence there exists an $N \ge 0$ such that factorial(N) = N!.

Inductive case. Suppose $N \ge 0$ such that factorial(N) = N!, and suppose n = N + 1. Then

$$factorial(n) = n \cdot factorial(n-1)$$
 by definition of factorial
 $= n \cdot factorial(N)$ by algebra and substitution
 $= n \cdot N!$ by the inductive hypothesis
 $= n!$ by definition of!

Therefore, by math induction, factorial is correct for all $n \in \mathbb{W}$. \square

What does correctness mean for an algorithm?

The outcome/result must aways match the specification. For arithSum, the specification is

$$\operatorname{arithSum}(N) = \sum_{k=1}^{N} k$$

To prove this, we need to reason about the *change of state* of the computation.

The *state* of the computation is represented by the values of the variables.

We can reason about a single line of code in terms of *preconditions* and *postconditions*. Suppose the preconditions include x = 5.

$$y := x + 1$$

Then the postconditions include

- y = 6
- x = 5
- ► x = y 1
- $G = 6.674 \times 10^{-11} \frac{\text{m}^3}{\text{kg s}^2}$

```
fun remainder(a, b) =
   let
```

Suppose $a, b \in \mathbb{Z}$

val q = a div b;

q=a div b by assignment. By the QRT (Thm 4.21) and the definition of division, $a=b\cdot q+R$ for some R, $0\leq R< b$. Then by algebra, $q=\frac{a-R}{b}$.

val p = q * b;

 $p = q \cdot b$ by assignment, and p = a - R by substitution and algebra.

val r = a - p;

By assignment, r = a - p. By substitution and algrebra, r = a - (a - R) = R.

in

r

end;

Since r is the value returned and is equal to the specified result R, this program returns the correct result. \square

For arithSum, N is the limit on the summation. Let n be the *number of iterations so far*. Our claim is

After *n* iterations,
$$s = \sum_{k=1}^{n} k$$

Notice

- After 0 iterations, s = 0 and $\sum_{k=1}^{0} k = 0$. Our claim is true before we start.
- ▶ Each iteration changes the state, but maintains the fact above (or, so we claim).
- When we're done, that's N iterations, so $\sum_{k=1}^{n} k = \sum_{k=1}^{N} k$ (or, so we claim).

Refining the claim:

$$\forall \ n \in \mathbb{W}, \ \text{after } n \text{ iterations } s = \sum_{k=1}^n k \text{ and } i = n+1$$

Theorem. arithSum(N) returns $\sum_{k=1}^{N} k$.

Lemma. $\forall n \in \mathbb{W}$, after n iterations, $s = \sum_{k=1}^{n} k$ and i = n + 1.

Proof (of lemma). By induction on the number of iterations, n. **Initialization.** After 0 iterations, $s=0=\sum_{k=1}^0 k$ by assignment, arithmetic, and definition of summation. i=1=0+1, by assignment and arithmetic. **Maintenance.** Suppose after $n\geq 0$ iterations, $s=\sum_{k=1}^n k$ and i=n+1. Let s_{old} be s after n iterations and s_{new} be s after n+1 iterations. Similarly define i_{old} and i_{new} . Then

$$\begin{array}{lll} s_{\text{new}} & = & s_{\text{old}} + i_{\text{old}} & \text{by assignment} \\ & = & \left(\sum_{k=1}^{n} k\right) + n + 1 & \text{by the inductive hypothesis} \\ & = & \sum_{k=1}^{n+1} k & \text{by the definition of summation} \\ i_{\text{new}} & = & i_{\text{old}} + 1 & \text{by assignment} \\ & = & n + 1 + 1 & \text{by the inductive hypothesis} \\ & = & (n+1) + 1 & \text{by associativity} \end{array}$$

Therefore the invariant holds. \Box

Theorem. arithSum(N) returns $\sum_{k=1}^{N} k$.

Lemma. $\forall n \in \mathbb{W}$, after n iterations, $s = \sum_{k=1}^{n} k$ and i = n + 1.

Proof (of theorem). Suppose $N \in \mathbb{W}$ is the input to arithSum.

Termination. The lemma tells us that after N iterations, $i = N + 1 \le N$, so the guard fails and the loop terminates.

At loop exit, $s = \sum_{k=1}^{N} k$, which is return.

Therefore the program arithSum is correct. \square

Principles of using loop invariants to prove correctness

- ▶ A *loop invariant* is a proposition that is true before and after each iteration of a loop, including before the entire loop starts and after it terminates. A *useful* loop invariant captures an aspect of the progress of the loop's work.
- The steps in a loop invariant proof, to prove and apply something in the form, " $\forall n \in \mathbb{W}$, after n iterations,"
 - ▶ **Initialization.** Prove that the property is true before the loop starts, that is, after 0 iterations. This is the base case in the inductive proof.
 - ▶ **Maintenance.** Prove that *if* the property is true before an iteration, *then* it is true after that iteration. This is the inductive case of the inductive proof.
 - ▶ **Termination.** Prove that the loop *will terminate*, and then apply the loop invariant to deduce a postcondition for the entire loop.

After n iterations, x is even.

```
fun aaa(m) =
  let
    val x = ref 0;
    val i = ref 0;
  in
    (while !i < m do
        (x := !x + 2 * !i;
        i := !i + 1);
    !x)
end;</pre>
```

Proof. By induction on the number of iterations.

Initialization. Before the loop starts, x = 0 by assignment.

Moreover, $x = 2 \cdot 0$, so x is even by definition.

Maintenance. Suppose that after n iterations x is even, for some $n \ge 0$. Let x_{old} and x_{new} be x after n and n+1 iterations, respectively.

 $\mathbf{x}_{\mathsf{old}} = 2j$ for some $j \in \mathbb{Z}$ by the inductive hypothesis and definition of even. Then

$$x_{\text{new}} = x_{\text{old}} + 2i$$
 by assignment
= $2j + 2i$ by substitution
= $2(j + i)$ by algebra

Hence x_{new} is even by definition.

Therefore, by the principle of mathematical induction, that x is even is a loop invariant. \square

After n iterations, $a = x^n$ and i = y - n.

Proof. By induction on the number of iterations.

Initialization. Suppose n=0, that is, the conditions before the loop starts. Then a=1 by assignment, and hence $a=x^0=x^n$ by algebra. Similarly, i=y by assignment, and hence i=y-0=y-n by algebra.

Maintenance. Suppose that $a=x^n$ and i=y-n after n iterations for some $n\geq 0$. Let $a_{\rm old}$, $a_{\rm new}$, $i_{\rm old}$, and $i_{\rm new}$ be defined in the usual way. Then

$$i_{\text{new}} = i_{\text{old}} - 1$$
 by assignment
$$= y - n - 1$$
 by the inductive hypothesis
$$= y - (n+1)$$
 by algebra
$$a_{\text{new}} = a_{\text{old}} \cdot x$$
 by assignment
$$= x^n \cdot x$$
 by the inductive hypothesis
$$= x^{n+1}$$
 by algebra

Therefore, by the principle of mathematical induction, $a = x^n$ and i = y - n, where n is the number of iterations completed, is a loop invariant. \square

◆ロト ◆部ト ◆注ト ◆注ト 注 りへで

```
fun xxx(m) =
  let
    val x = ref m;
    val y = ref 0;
    val i = ref 1;
  in
    (while !i < m div 2 do
        (x := !x - i;
        y := !y + i;
        i := !i * 2);
    !x - !y)
end;</pre>
```

Proof. By induction on the number of iterations.

```
fun xxx(m) =
 let
   val x = ref m;
   val y = ref 0;
   val i = ref 1;
 in
   (while !i < m div 2 do
     (x := !x - i;
     y := !y + i;
     i := !i * 2);
    |x - |y|
 end;
```

fun xxx(m) =
 let
 val x = ref m;
 val y = ref 0;
 val i = ref 1;
 in
 (while !i < m div 2 do
 (x := !x - i;
 y := !y + i;
 i := !i * 2);
 !x - !y)
 end;</pre>

Proof. By induction on the number of iterations. **Initialization.** Before the loop starts, x = m and y = 0 by assignment. Hence x + y = m by algebra.

```
fun xxx(m) =
  let
    val x = ref m;
    val y = ref 0;
    val i = ref 1;
  in
    (while !i < m div 2 do
        (x := !x - i;
        y := !y + i;
        i := !i * 2);
    !x - !y)
end;</pre>
```

Proof. By induction on the number of iterations. **Initialization.** Before the loop starts, x=m and y=0 by assignment. Hence x+y=m by algebra. **Maintenance** Suppose x+y=m after n iterations for some $n\geq 0$. Let x_{old} , x_{new} , y_{old} , and y_{new} be defined in the usual way. Then

```
fun xxx(m) =
  let
    val x = ref m;
    val y = ref 0;
    val i = ref 1:
  in
   (while !i < m div 2 do
     (x := !x - i:
      y := !y + i;
      i := !i * 2):
    |x - |\lambda|
  end:
```

Proof. By induction on the number of iterations. **Initialization.** Before the loop starts, x = m and y = 0 by assignment. Hence x + y = m by algebra. **Maintenance** Suppose x + y = m after n iterations for some $n \ge 0$. Let x_{old} , x_{new} , y_{old} , and y_{new} be defined in the usual way. Then

$$egin{array}{lll} x_{
m new} &=& x_{
m old} - i & {
m by assignment} \ y_{
m new} &=& y_{
m old} + i & {
m by assignment} \ x_{
m new} + y_{
m new} &=& x_{
m old} - i + y_{
m old} + i & {
m by substitution} \ &=& x_{
m old} + y_{
m old} & {
m by algebra} \ &=& m & {
m by the inductive hypothesis} \ \end{array}$$

```
fun xxx(m) =
  let
    val x = ref m;
    val y = ref 0;
    val i = ref 1;
  in
   (while !i < m div 2 do
     (x := !x - i:
      y := !y + i;
      i := !i * 2):
    |x - |\lambda|
  end:
```

Proof. By induction on the number of iterations. **Initialization.** Before the loop starts, x = m and y = 0 by assignment. Hence x + y = m by algebra.

Maintenance Suppose x+y=m after n iterations for some $n\geq 0$. Let $x_{\rm old}$, $x_{\rm new}$, $y_{\rm old}$, and $y_{\rm new}$ be defined in the usual way. Then

$$egin{array}{lll} x_{
m new} &=& x_{
m old} - i & {
m by assignment} \ y_{
m new} &=& y_{
m old} + i & {
m by assignment} \ x_{
m new} + y_{
m new} &=& x_{
m old} - i + y_{
m old} + i & {
m by substitution} \ &=& x_{
m old} + y_{
m old} & {
m by algebra} \ &=& m & {
m by the inductive hypothesis} \end{array}$$

Therefore, by the principle of mathematical induction, x + y = m is a loop invariant. \square

Reminder: Ex 6.10.(2-5) for next time. Also (very important):

- ▶ Read 7 intro and 7.1 carefully
- ► Read 7.2
- ► Skim 7.3
- ► Take quiz