Chapter 6 roadmap:

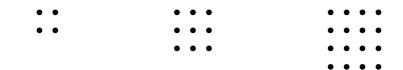
- Recursive definitions and types (last week Wednesday)
- Structural induction (Fridayday)
- Mathematical induction (Today)
- Loop invariant proofs (Wednesday and Friday)

Last time we saw self-referential proofs for propositions quantified over recursively defined sets, **structural induction**.

Today we see self-referential proofs for propositions quantified over the natural numbers and whole numbers.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

- Opening examples and observations
- General form of mathematical induction
- Comments on the term *induction*
- Other examples, including on sets



•

٠

•

٠



▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Conjecture:

•

$$\forall n \in \mathbb{N}, \sum_{i=1}^{n} (2i-1) = n^2$$

$$\sum_{i=1}^{5} (2i-1) = (2 \cdot 1 - 1) + (2 \cdot 2 - 1) + (2 \cdot 3 - 1) + (2 \cdot 4 - 1) + (2 \cdot 5 - 1) = 1 + 3 + 5 + 7 + 9$$

Recall the Peano definition of \mathbb{W} . Similarly for \mathbb{N} : $n \in \mathbb{N}$ if n = 1 or n = x + 1 for some $x \in \mathbb{N}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\forall n \in \mathbb{N}, \sum_{i=1}^{n} (2i-1) = n^2$$

$$\forall n \in \mathbb{N}, \sum_{i=1}^{n} (2i-1) = n^2$$

Proof. Suppose $n \in \mathbb{N}$. Then either n = 1 or there exists $n \in \mathbb{N}$ such that n = x + 1. **Base case.** Suppose n = 1. Then

$$\sum_{i=1}^{n} (2i-1) = 2 - 1 = 1 = 1^{2}$$

Inductive case. Suppose n = x + 1 such that $x \in \mathbb{N}$ and $\sum_{i=1}^{x} (2i - 1) = x^2$. Then

$$\sum_{i=1}^{n} (2i-1) = 2n-1 + \sum_{i=1}^{n-1} (2i-1)$$
by definition of summation
$$= 2n-1 + \sum_{i=1}^{x} (2i-1)$$
by substitution
$$= 2n-1 + x^{2}$$
by substitution
$$= 2n-1 + (n-1)^{2}$$
by substitution
$$= 2n-1 + n^{2} - 2n + 1$$
by algebra (FOIL)
$$= n^{2}$$
by algebra (cancellation) \square

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

4 0	0 + 1	=	1	=	5 ⁰
4 4	4+1	=	5	=	5 ¹
4 24	24 + 1	=	25	=	5 ²
4 124	124 + 1	=	125	=	5 ³
4 624	624 + 1	=	625	=	5 ⁴

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - つへで

Conjecture: $\forall n \in \mathbb{W}, \ 4|5^n - 1$

 $\forall n \in \mathbb{W}, 4|5^n-1$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $\forall n \in \mathbb{W}, 4|5^n-1$

Proof. By induction on *n*.

Base case. Suppose n = 0. Then $5^0 - 1 = 1 - 1 = 0 = 4 \cdot 0$. Hence $4|5^0 - 1$ by the definition of divides.

Inductive case. Suppose n > 0 and $4|5^{n-1} - 1$. Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^{n-1} - 1 = 4k$. Moreover,

$$5^{n} - 1 = 5 \cdot 5^{n-1} - 1$$
 by algebra, unless otherwise noted...

$$= 5 \cdot (5^{n-1} - 1 + 1) - 1$$

$$= 5(4k + 1) - 1$$
 by the inductive hypothesis

$$= 5 \cdot 4 \cdot k + 5 - 1$$

$$= 5 \cdot 4 \cdot k + 4$$

$$= 4(5k + 1)$$

Hence $4|5^n - 1$ by definition of divides. \Box

 $\forall n \in \mathbb{W}, 4|5^n-1$

Proof. By induction on *n*.

Base case. Suppose n = 0. Then $5^0 - 1 = 1 - 1 = 0 = 4 \cdot 0$. Hence $4|5^0 - 1$ by the definition of divides.

Inductive case. Suppose $4|5^n - 1$ for some $n \ge 0$. Then, by definition of divides, there exists $k \in \mathbb{W}$ such that $5^n - 1 = 4k$. Moreover,

$$5^{n+1} - 1 = 5 \cdot 5^n - 1$$
 by algebra, unless otherwise noted...

$$= 5 \cdot (5^n - 1 + 1) - 1$$

$$= 5(4k + 1) - 1$$
 by the inductive hypothesis

$$= 5 \cdot 4 \cdot k + 5 - 1$$

$$= 5 \cdot 4 \cdot k + 4$$

$$= 4(5k + 1)$$

Hence $4|5^{n+1} - 1$ by definition of divides. \Box

```
To prove \forall n \in \mathbb{W}, I(n),
  Show I(0)
  ▶ Show \forall n \in \mathbb{W}, I(n) \rightarrow I(n+1), that is
     Suppose n \ge 0 such that I(n)
     I(n+1)
     Alternately, show \forall n \in \mathbb{W} such that n > 0, I(n-1) \rightarrow I(n), that is
     Suppose n \ge 0 such that I(n-1)
     I(n)
```

▶ Conlude $\forall n \in \mathbb{W}, I(n)$

The principle of mathematical induction is

$$[I(0) \land \forall n \in \mathbb{W}, I(n) \to I(n+1)] \to [\forall n \in \mathbb{W}, I(n)]$$

▲□▶ ▲圖▶ ▲필▶ ▲필▶ 三里

$\sum_{i=1}^{1} i =$	1	=	1	=	$\frac{1\cdot 2}{2}$
$\sum_{i=1}^{2} i =$	1+2	=	3	=	$\frac{2\cdot 3}{2}$
$\sum_{i=1}^{3} i =$	1 + 2 + 3	=	6	=	$\frac{3\cdot 4}{2}$
$\sum_{i=1}^{4} i =$	1 + 2 + 3 + 4	=	10	=	$\frac{4\cdot 5}{2}$
$\sum_{i=1}^{5} i =$	1 + 2 + 3 + 4 + 5	=	15	=	<u>5.6</u> 2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Ex 6.5.1.
$$\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$$

Ex 6.5.1. $\forall n \in \mathbb{N}, \quad \sum_{i=1}^{n} i = \frac{n(n+1)}{2}.$

Proof. By induction on *n*. **Base case.** Suppose n = 1. Then $\sum_{i=1}^{1} i = 1 = \frac{1(1+1)}{2}$. **Inductive case.** Suppose that for some $n \ge 1$, $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$. Then

 $\sum_{i=1}^{n+1} i = n+1 + \sum_{i=1}^{n} i$ by definition of summation

= $n+1+\frac{n(n+1)}{2}$ by the inductive hypothesis

"

"

 $= \frac{2n+2+n^2+n}{2}$ by algebra

$$=$$
 $\frac{n^2+3n+2}{2}$

$$=$$
 $\frac{(n+1)(n+2)}{2}$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Observe:

A	$ \mathscr{P}(A) $
$ \emptyset = 0$	$ \{\emptyset\} =1$
$ \{a\} =1$	$ \{\emptyset, \{a\}\} = 2$
$ \{a, b\} = 2$	$ \{\emptyset, \{a\}, \{b\}, \{a, b\}\} = 4$
$ \{a, b, c\} = 3$	$ \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\} = 8$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Conjecture: For any finite set A, $|\mathscr{P}(A)| = 2^{|A|}$.

Theorem 6.5. For all $n \in \mathbb{W}$, if A is a set such that |A| = n, then $|P(A)| = 2^n$.

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Theorem 6.5. For all $n \in \mathbb{W}$, if A is a set such that |A| = n, then $|\mathscr{P}(A)| = 2^n$. **Proof.** By induction on n.

Base case. Suppose n = 0. Then $A = \emptyset$, and $|\mathscr{P}(A)| = |\{\emptyset\}| = 1 = 2^0$. **Inductive case.** Suppose for some $n \ge 0$, if A is a set such that |A| = n, then $|\mathscr{P}(A)| = 2^n$. Suppose further than A is a set such that |A| = n + 1.

Since |A| > 0, let $a \in A$. By Corollary 4.12, $\mathscr{P}(A - \{a\})$ and $\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\}$ make a partition of $\mathscr{P}(A)$. Then

$$\begin{split} |\mathscr{P}(A - \{a\})| &= |\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\}| & \text{by Exercise 7.9.6} \\ |A - \{a\}| &= |A| - |\{a\}| & \text{since } \{a\} \subseteq A, \text{ and by Ex 7.9.1} \\ &= n + 1 - 1 & \text{by supposition} \\ &= n & \text{by arithmetic} \\ |\mathscr{P}(A - \{a\})| &= 2^n & \text{by the inductive hypothesis} \\ |\mathscr{P}(A)| &= |\mathscr{P}(A - \{a\})| \\ &+ |\{C \cup \{a\} \mid C \in \mathscr{P}(A - \{a\})\}| & \text{by Theorem 7.12} \\ &= 2^n + 2^n & \text{by substitution} \\ &= 2^{n+1} & \text{by algebra.} \Box \end{split}$$

→ □ ▶ → ■ ▶ → ■ ▶ → ■ → ● ● ●

Iterated union (similar for intersection):

$$\bigcup_{i=1}^{n} A_i = A_1 \cup A_2 \cup \cdots \cup A_n$$

Ex 6.6.1. $\forall n \in \mathbb{N}, \overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}$

Proof. By induction on n.

Base case. Suppose n = 1. Then

$$\overline{\bigcup_{i=1}^{1} A_i} = \overline{A_i} = \bigcap_{i=1}^{1} \overline{A_1}$$

Inductive case. Suppose $\overline{\bigcup_{i=1}^{n} A_i} = \bigcap_{i=1}^{n} \overline{A_i}$ for some $n \ge 1$. Then

$$\bigcup_{i=1}^{n+1} A_i = \overline{A_{n+1} \cup \bigcup_{i=1}^n A_i}$$
 by definition of iterated union

$$= \overline{A_{n+1}} \cap \bigcup_{i=1}^{n} A_i \quad \text{by Ex 4.3.13 (DeMorgan's law of sets)}$$

$$= \overline{A_{n+1}} \cap \bigcap_{i=1}^{n} \overline{A_i}$$
 by the inductive hypothesis

 $= \bigcap_{i=1}^{n+1} \overline{A_i} \qquad by the definition of iterated intersection$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

For next time:

Pg 273: 6.5.(2 & 4) Pg 278: 6.6.(2 & 3)

Read 6.9 carefully Skim 6.10

Take quiz (by Friday)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで