Chapter 4 roadmap:

- Subset proofs (last week Monday)
- Set equality and emptiness proofs (last week Wednesday)
- Conditional and biconditional proofs (last week Friday)
- Proofs about powersets (Today)
- From theorems to algorithms (Friday)
- (Start Chapter 5 next week)

Today: Case study of large proof (powersets)

- Review of powersets and their recursive structure
- Big result
- Warm-up proofs
- Proving the big result

Consider the set $A=\{1,2,3,4,5\}$. Which of the following is true about the powerset $\mathscr{P}(A)$? (Only one is true.)
$\{3\} \in \mathscr{P}(A)$
$3 \in \mathscr{P}(A)$
$\{3\} \subseteq \mathscr{P}(A)$
$3 \subseteq \mathscr{P}(A)$

$$
\begin{aligned}
& A=\{a, b, c\} \\
& \mathscr{P}(A)=\{\{a, b, c\},\{a, b\},\{a, c\},\{a\}, \\
& \{b, c\},\{b\},\{c\}, \emptyset\} \\
& A-\{a\}=\{b, c\} \quad \mathscr{P}(A-\{a\})=\{\{b, c\},\{b\},\{c\}, \emptyset\} \\
& \{\{a\} \cup C \mid C \in \mathscr{P}(A-\{a\})\}=\{\{a, b, c\},\{a, b\},\{a, c\},\{a\}\} \\
& \mathscr{P}(A)=\{\{a, b, c\},\{a, b\},\{a, c\},\{a\},=\{\{a\} \cup C \mid C \in \mathscr{P}(A-\{a\})\} \\
& \{b, c\},\{b\},\{c\}, \emptyset\} \quad \cup \mathscr{P}(A-\{a\})
\end{aligned}
$$

$$
\begin{aligned}
& A=\{a, b, c\} \mathscr{P}(A-\{a\})=\{\{b, c\},\{b\},\{c\}, \emptyset\} \\
& \{\{a\} \cup C \mid C \in \mathscr{P}(A-\{a\})\}=\{\{a, b, c\},\{a, b\},\{a, c\},\{a\}\}
\end{aligned}
$$

If $a \in A$, then $\mathscr{P}(A)$ consists in $\mathscr{P}(A-\{a\})$ and $\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}$
Corollary 4.12. If $a \in A$, then $\mathscr{P}(A-\{a\})$ and $\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}$ make a partition of $\mathscr{P}(A)$.

$A \subseteq B$ iff $A \in \mathscr{P}(B)$

$A \in \mathscr{P}(A)$
$\emptyset \in \mathscr{P}(A)$
$a \in A$ iff $\{a\} \in \mathscr{P}(A)$

Warm-up proofs:

Theorem 4.7. If $\mathscr{P}(A) \subseteq \mathscr{P}(B)$, then $A \subseteq B$.

Exercise 4.9.1. If $B \subseteq A$, then $\mathscr{P}(B)-\mathscr{P}(A)=\emptyset$.

Roadmap

Corollary 4.12

$\mathscr{P}(A-\{a\})$ and $\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}$
make a partition of $\mathscr{P}(A)$.

Theorem 4.11 / Exercise 4.9.6
$\mathscr{P}(A-\{a\}) \cap$ $\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}=\emptyset$

Theorem 4.10.
$\mathscr{P}(A-\{a\}) \cup\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}=\mathscr{P}(A)$

Lemma 4.9.

$$
\begin{aligned}
& \mathscr{P}(A-\{a\}) \cup\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\} \\
& \subseteq \mathscr{P}(A)
\end{aligned}
$$

Lemma 4.8.

$$
\begin{aligned}
& \mathscr{P}(A) \subseteq \\
& \mathscr{P}(A-\{a\}) \cup\{C \cup\{a\} \mid C \in \mathscr{P}(A-\{a\})\}
\end{aligned}
$$

For next time:

Pg 174: 4.9.(1, 3, 4, 6)
Skim 4.(10 \& 11)
Take quiz

