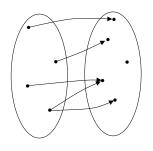
Chapter 7 outline:

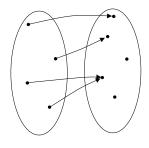
- Introduction, function equality, and anonymous functions (Monday)
- Image and inverse images (Today)
- Function properties, composition, and applications to programming (next week Monday)
- Cardinality (next week Wednesday)
- Countability (next week Friday)
- Review (week-after Monday)
- ► Test 3, on Ch 6 & 7 (week-after Wednesday, Apr 19)

Today:

- Review definitions from last time
- New definitions: image and inverse image
- Proofs
- Programming

A relation f from X to Y is a function (written $f: X \to Y$) if $\forall x \in X$, (1) $\exists y \in Y \mid (x, y) \in f$, and (2) $\forall y_1, y_2 \in Y$, (x, y_1) , $(x, y_2) \in f \to y_1 = y_2$.





Not a function.

(There's a domain element that is related to two things.)

Not a function.

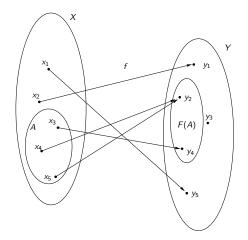
(There's a domain element that is not related to anything.)

A function.

(It's OK that two domain elements are related to the same thing and one codomain element has nothing related to it.)

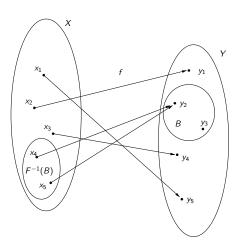
Image

$$F(A) = \{ y \in Y \mid \exists \ x \in A \text{ such that } f(x) = y \}$$



Inverse image

$$F^{-1}(B) = \{x \in X \mid f(x) \in B\}$$



Lemma 7.2. If $f: X \to Y$, then $F(\emptyset) = \emptyset$.

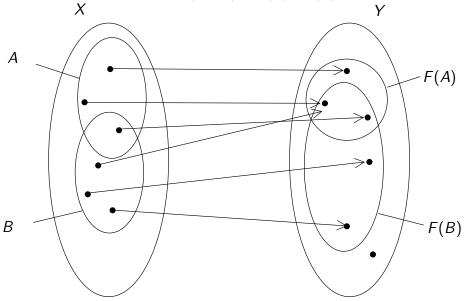
Lemma 7.3. If $f: X \to Y$, $A \subseteq X$, and $A \neq \emptyset$, then $F(A) \neq \emptyset$.

Lemma 7.4. If $f: X \to Y$, then $F^{-1}(\emptyset) = \emptyset$.

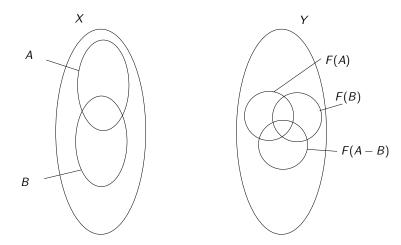
We might expect the following, but it's not true:

Lemma XXXX. If $f: X \to Y$, $A \subseteq Y$, and $A \neq \emptyset$, then $F^{-1}(A) \neq \emptyset$.

Ex 7.4.1. If $A, B \subseteq X$, then $F(A \cap B) \subseteq F(A) \cap F(B)$.



Consider this picture of X and Y:



Attempted proof. Suppose $A, B \subseteq X$ and $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

Attempted proof. Suppose $A, B \subseteq X$ and $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

By definition of difference, $x \in A$, and $x \notin B$. By definition of image, $f(x) \in F(A)$.

Attempted proof. Suppose $A, B \subseteq X$ and $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

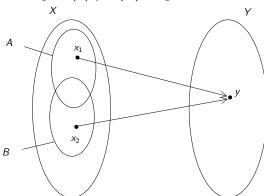
By definition of difference, $x \in A$, and $x \notin B$. By definition of image, $f(x) \in F(A)$. So, also by definition of image, $f(x) \notin F(B)$. Right?

Attempted proof. Suppose $A, B \subseteq X$ and $y \in F(A - B)$. By definition of image, there exists $x \in A - B$ such that f(x) = y.

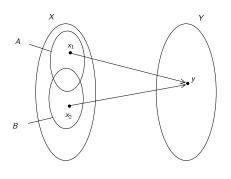
By definition of difference, $x \in A$, and $x \notin B$. By definition of image, $f(x) \in F(A)$.

So, also by definition of image, $f(x) \notin F(B)$. Right?

NO!



Ex 7.4.3. If $A, B \subseteq X$, then $F(A - B) \subseteq F(A) - F(B)$?



Let
$$X = \{x_1, x_2\}$$
, $Y = \{y\}$, $A = \{x_1\}$, and $B = \{x_2\}$.

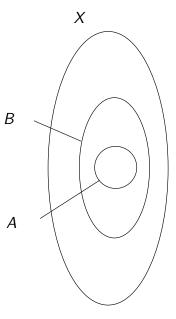
Let
$$f = \{(x_1, y), (x_2, y)\}.$$

Then
$$F(A - B) = F(\{x_1\} - \{x_2\}) = F(\{x_1\}) = \{y\}.$$

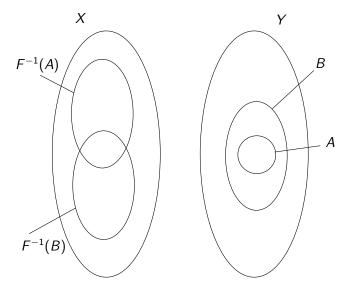
Moreover,
$$F(A) - F(B) = \{y\} - \{y\} = \emptyset$$
.

So
$$F(A - B) \not\subseteq F(A) - F(B)$$

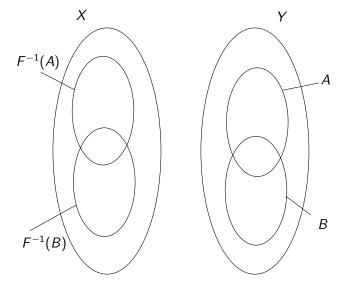
Ex 7.4.4. If $A \subseteq B \subseteq X$, then $F(B) = F(B - A) \cup F(A)$.



Ex 7.4.6. If $A \subseteq B \subseteq Y$, then $F^{-1}(A) \subseteq F^{-1}(B)$.



Ex 7.4.7. If $A, B \subseteq Y$, then $F^{-1}(A \cup B) = F^{-1}(A) \cup F^{-1}(B)$.



For next time:

Pg 342: 7.4.(2, 5, 8, 9, 10) (Programming problems are with the next assignment)

Read 7.(6-8)

Take quiz