Chapter 5 roadmap:

- Introduction to relations (Monday before break)
- Properties of relations (Wednesday and Friday before break)

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- Transitive closure (Today)
- Partial order relations (Wednesday)
- Review for Test 2 (Friday)
- Test 2 on Chapters 4 & 5 (next week Monday)

Today:

- Review of relation properties
- An arithmetic on relations
- Computing whether a function is transitive
- Transitive closure

A relation from one set to another	R	set of pairs	subset of $X \times Y$ $R \subseteq X \times Y$	isEnrolledIn, isTaughtBy
A relation on a set	R	set of pairs	subset of $X \times X$ $R \subseteq X \times X$	eats, divides
The image of an element under a relation	$\mathcal{I}_R(a)$	set	set of things that a is related to $\mathcal{I}_R(a) = \{b \in Y \mid (a, b) \in R\}$	classes Bob is enrolled in, numbers that 4 divides
The image of a set under a relation	$\mathcal{I}_R(A)$	set	set of things that things in A are related to $\mathcal{I}_R(A) = \{ b \in Y \mid \exists a \in A \mid (a, b) \in R \}$	classes Bob, Larry, or Alice are taking, numbers that 2, 3, or 5 divide
The inverse of a relation	R^{-1}	relation	the arrows/pairs of R reversed $R^{-1} = \{(b, a) \in Y \times X \mid (a, b) \in R\}$	hasOnRoster, teaches, isEatenBy, isDivisibleBy
The composition of two relations	<i>S</i> ∘ <i>R</i>	relation	two hops combined to one hop (Assume $S \subseteq Y \times Z$) $S \circ R = \{(a, c) \in X \times Z \mid \exists \ b \in Y \ \mid (a, b) \in R \land (b, c) \in S\}$	hasAsProfessor, eatsSomethingThatEats
The identity relation on a set	i _X	relation	everything is related only to itself $i_X = \{(x, x) \mid x \in X\}$	=

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

ReflexivityInformalEverything is related to itselfFormal $\forall x \in X, (x, x) \in R$

All pairs are mutual

Transitivity

Anything reachable by two hops is reachable by one hop

 $\begin{aligned} \forall x, y, z \in X, \\ (x, y), (y, z) \in R \rightarrow (x, z) \in R \\ \mathsf{OR} \\ \forall (x, y), (y, z) \in R, (x, z) \in R \end{aligned}$

Symmetry

 \equiv , isOppositeOf, isOnSameRiver, isAquaintedWith $<, \leq, >, \geq, \subseteq$, isTallerThan, isAncestorOf, isWestOf

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Operators	x + y -x	$egin{array}{ll} p ee q \ \sim p \end{array}$	$rac{A \cup B}{\overline{A}}$
Distribution	$ x \cdot (y+z) = x \cdot y + x \cdot z $	$egin{aligned} p \wedge (q ee r) \ \equiv (p \wedge q) ee (p \wedge r) \end{aligned}$	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
Identity	$\begin{array}{l} x + 0 = x \\ x \cdot 1 = x \end{array}$	$p \lor T \equiv p$ $p \land F \equiv p$	$\begin{array}{l} A \cup \emptyset = A \\ A \cap \mathcal{U} = A \end{array}$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

 $S \circ R$

 R^{-1}

 $i_X \circ R = R$

 $R^2 = R \circ R$

R	is one less than	eats	is parent of
R ²	is two less than	eats something that eats	is grandparent of
R ³	is three less than	eats something that eats something that eats	is great grandparent of
???	<	gets nutrients from	is ancestor of

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Short form: $\forall (x, y), (y, z) \in R, (x, z) \in R$

Transform this to:

$$\forall (x,y) \in R, \forall (w,z) \in R, \text{ if } y = w \text{ then } (x,z) \in R$$

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$$\forall (x,y) \in R, \ \forall (w,z) \in R, \text{ if } y = w \text{ then } (x,z) \in R$$

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$$\forall (x, y) \in R, \forall (w, z) \in R, \text{ if } y = w \text{ then } (x, z) \in R$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$$\forall (x,y) \in R, \forall (w,z) \in R, \text{ if } y = w \text{ then } (x,z) \in R$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へで

Short form: $\forall (x, y), (y, z) \in R, (x, y) \in R$

Transform this to:

$$\forall (x,y) \in R, \forall (w,z) \in R, \text{ if } y = w \text{ then } (x,z) \in R$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

$$\{(1, 2), (2, 3), (5, 2), (1, 5), (2, 5), (1, 3)\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Computing transitivity is a $\forall \ \forall \ \exists \ problem$

Our strategy is, for each pair (x, y), walk through the whole (original) list. If the list

- 1. is empty, then true (vacuously)
- 2. begins with (y, z) (that is, begins with (w, z) where y = w), then search the whole (original) list for (x, z).

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

2.1 if found, keep searching

- $2.2\,$ if not found, then false
- 3. begins with (w, z) for $w \neq y$, skip it and keep searching

Domain Rivers	First relation <i>flows into</i> The Platte flows into the Mis- souri, and the Missouri flows into the Mississippi.	Second relation <i>is tributary to</i> The Platte is a tributary to the Missouri; both the Platte and the Missouri are tributaries to the Mississippi.
People	<i>is parent of</i> Bill is Jane's parent; Jane is Leroy's parent	<i>is ancestor of</i> Bill is Jane's ancestor; Leroy has both Jane and Bill as ancestors.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Domain Animals	First relation <i>eats</i> Rabbit eats clover; coyote eats rabbit.	Second relation derives nutrients from Coyote derives nutrients from rabbit; rabbit derives nutrients from clover; both coyote and rabbit ultimately derive nutrients from clover.
Z	<i>is one less than</i> 2 is one less than 3; 3 is one less than 4	< 2 < 3; 3 < 4; 2 < 4.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

(日) (四) (王) (王) (王) (王)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

If R is a relation on X, then R^T is the **transitive closure** of R if

- \triangleright R^T is transitive
- ► $R \subseteq R^T$
- ▶ If S is a transitive relation such that $R \subseteq S$, then $R^T \subseteq S$

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

Which of the following expresses a transitive closure?

- My friends are my friends, an no one else.
- Any friend of my friend is also my friend.
- Any friend of my friends' friends is also my friend.
- My friends are my friends, and so are my friends's friends, and so are my friends' friends' friends, ans so on forever.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 -

Let R be a relation and let T be the transitive closure of R. What, then, do you know to be true? Select all that apply.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

- R is transitive
- ► T is a proposition
- T is a relation
- T is transitive
- ► T is a powerset
- \blacktriangleright $R \subseteq T$
- $T \subseteq R$

Theorem 5.12 The transitive closure of a relation R is unique.

Proof. Suppose *S* and *T* are relations fulfilling the requirements for being transitive closures of *R*. By items 1 and 2, *S* is transitive and $R \subseteq S$, so by item 3, $T \subseteq S$. By items 1 and 2, *T* is transitive and $R \subseteq T$, so by item 3, $S \subseteq T$. Therefore S = T by the definition of set equality. \Box

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○○

Other closures:

Ex 5.7.2 $R \cup i_A$ is the reflexive closure of R

Ex 5.7.3. $R \cup R^{-1}$ is the symmetric closure of R. (HW)

Ex 5.7.2 $R \cup i_A$ is the reflexive closure of R

Proof. Suppose R is a relation on A. [$R \cup i_A$ is reflexive:] Suppose $a \in A$. $(a, a) \in i_A$ by definition of identity relation. $(a, a) \in R \cup i_A$ by definition of union. Hence $R \cup i_A$ is reflexive by definition.

 $[R \subseteq R \cup i_A:]$ Suppose $(a, b) \in R$. Then $(a, b) \in R \cup i_A$ by definition of uniion. Hence $R \subseteq R \cup i_A$. (Alternately, we could have cited Exercise 4.2.1.)

 $[R \cup i_A \text{ is the smallest such relation:}]$ Suppose S is a reflexive relation such that $R \subseteq S$. Suppose further $(a, b) \in R \cup i_A$. By definition of union, $(a, b) \in R$ or $(a, b) \in i_A$.

Case 1: Suppose $(a, b) \in R$. Then $(a, b) \in S$ by definition of subset (since we supposed $R \subseteq S$).

Case 2: Suppose $(a, b) \in i_A$. Then, by definition of identity relation, a = b. $(a, a) \in S$ by definition of reflexive (since we suppose S is reflexive). $(a, b) \in S$ by substitution.

Either way, $(a, b) \in S$ and hence $R \cup i_A \subseteq S$ by definition of subset. Therefore, $R \cup i_A$ is the reflexive closure of R. \Box **Theorem 5.13** If R is a relation on a set A, then

$$R^{\infty} = \bigcup_{i=1}^{\infty} R^{i} = \{(x, y) \mid \exists i \in \mathbb{N} \text{ such that } (x, y) \in R^{i}\}$$

is the transitive closure of R.

Proof. Suppose R is a relation on a set A.

Suppose a, b, $c \in A$, $(a, b), (b, c) \in R^{\infty}$. By the definition of R^{∞} , there exist $i, j \in \mathbb{N}$ such that $(a, b) \in R^i$ and $(b, c) \in R^j$. By the definition of relation composition and Exercise 5.7.4, $(a, c) \in R^j \circ R^i = R^{i+j}$. $R^{i+j} \subseteq R^{\infty}$ by the definition of R^{∞} . By the definition of subset, $(a, c) \in R^{\infty}$. Hence, R^{∞} is transitive by definition.

Suppose $a, b \in A$ and $(a, b) \in R$. By the definition of R^{∞} (taking i = 1), $(a, b) \in R^{\infty}$, and so $R \subseteq R^{\infty}$, by definition of subset.

Suppose S is a transitive relation on A and $R \subseteq S$. Further suppose $(a, b) \in R^{\infty}$. Then, by definition of R^{∞} , there exists $i \in \mathbb{N}$ such that $(a, b) \in R^i$. By Lemma 5.14, $(a, b) \in S$. Hence $R^{\infty} \subseteq S$ by definition of subset. Therefore, R^{∞} is the transitive closure of R. \Box

For next time:

Pg 217: 5.6.(1 & 3) Pg 222: 5.7.(3,4,5) For Exercise 5.7.4, it should say $(S \circ R) \circ Q = S \circ (R \circ Q)$ instead of $(R \circ S) \circ Q = R \circ (S \circ Q)$. Read 5.(8 & 9) Take quiz

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで