
This week (Chapter 2):

I Abstract data types (Today)

I Data Structures (Wednesday and Friday)

I Programming practices (Friday)

Today:

I Recent exercises and quiz questions

I Definition abstract data type, especially in contrast with data structure

I The “canonical” ADTs

I Start data structures (time permitting)



public class SimpleLinkedList<E> implements Iterable<E> {

private class Node {

E datum;

Node next;

Node(E datum, Node next) {

this.datum = datum;

this.next = next;

}

}

private Node head;

private Node tail;

private int size;

public void set(int index, E element) {

checkIndex(index);

Node current = head;

for (int i = 0; i < index; i++) current = current.next;

current.datum = element;

}

// ...

}

Class invariant for SimpleLinkedList:

(a) head = null iff tail = null iff size = 0.

(b) If tail 6= null then tail.next = null.

(c) If head 6= null then tail is reached by
following size− 1 next links from head.

1.17 State and prove a loop invariant for the loop
of set(). The loop invariant should capture the
meaning of the variables current and head.
1.18 Argue that set() preserves the class
invariant.



public class DataSet {

private int sum, n, min, max;

public DataSet(int initialVal) {

min = max = sum = initialVal;

n = 1;

}

public void add(int x) {

sum += x;

n++;

if (x < min) min = x;

if (x > max) max = x;

}

private double ave() { return ((double) sum) / n;}

private int range() { return max - min; }

}



Best case Worst case Expected case

Bounded linear search

Binary search

Quick sort



An abstract data type (ADT) is a data type whose representation is hidden
from the client. Implementing an ADT as a Java class is not very different
from implementing a function library as a set of static methods. The primary
difference is that we associate data with the function implementations and
we hide the representation of the data from the client. When using an ADT,
we focus on the operations specified in the API and pay no attention to the
data representation; when implementing an ADT, we focus on the data, then
implement operations on that data.

[Sedgewick and Wayne, Algorithms, Pg 64; also cf pg 84]



The “canonical ADTs”:

List. Linear collection with sequential and random access.

Stack. Linear collection with LIFO access.

Queue. Linear collection with FIFO access.

Set. Unordered collection with binary membership.

Bag. Unordered collection with enumerated membership.

Map. Unordered collection of associations between keys and values.



a b c d e f g

0 5 61 2 3 4

a

b

c

d

e

g f

b c d e f

a

g

List Stack Queue

b

a
c

e
d

f

g

c

b

a

f

g

e

d

t

z

y

w

u

x

v

c

b

a

f

g

e

d

OR
b

a
c

e
d

f

gc
c

b

a

a

a

a

a
a a

a

f

f

f g

g

c

e e

e

e
e
e

e

e e

e

Set Map Bag



1

2

3

4

5

6

7

8

9

10

11

12

13
Annika Annaliese Raylee Emma

Esther Elizabeth Megan Linnea Chelsea

Karin Joan Kristen

Patricia

1

2

13

3 4

5 6 7 8 9

10 11 12

Annika Annaliese Raylee Emma

Esther Elizabeth Megan Linnea Chelsea

Karin Joan Kristen

Patricia



List

Stack
LIFO access

Queue

Random access

FIFO access

Map
Lookup by index Lookup by key

Whole−number value

Any value

Set

Bag

Items

Associations Binary membership

Enumerated membershp



The four basic ways to implement an ADT:

I Use an array

I Use a linked structure

I Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

I Adapt an existing implementation of another ADT.



Coming up:

Due Tues, Jan 24: (end of day)
Finish reading Section 2.1
Do Ex 1.11
Take ADT quiz

Due Fri, Jan 27:
Read Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “basic data structures” practice problems (by Mon, Jan 30)
Do “Implementing ADTs” project (suggested by Wed, Feb 1)


