Prolegomena unit outline:

- Algorithms and correctness (last week Wednesday and Friday)
- Algorithms and efficiency (this week Wednesday and Friday)
- Abstract data types (next week Monday)
- Data Structures (next week Wednesday and Friday)

Today and Friday:

- Go over Ex 1.(6 \& 7)
- The general meaning of efficiency
- The analyses of bounded linear search, binary search, and selection sort
- The precise meaning of big-oh, big-theta, and big-omega
- The costs of elemental algorithms
- The analysis of merge sort and quick sort

How to succeed in CSCI 345:

- Know your DMFP and Programming II stuff.
- Read the textbook.
- Do the practice problems.
- Figure out the quiz questions.
- Do the projects on time.
- Use the project to understand the data structures and algorithms-don't just fiddle with the code until the tests pass.
- Keep electronic devices away during class.

Quiz question

Loop invariant. A proposition about the state of execution preserved through all iterations.

Correctness claim. A proposition about what an algorithm returns.
Recursion invariant. A proposition about the preconditions to every call to a recursive method or function.

Class invariant. A proposition about the aspects of the state of an instance of a class that do not change while other aspects of the object's state change.

Unused asnwers

- A propositions about the interface of a class.
- A proposition about the special cases of a class.
- A conjecture about an algorithm's efficiency.
- A proposition about the number of iterations a loop performs.
1.6 Write a loop invariant to capture the relationships among sequence, smallest_so_far, smallest_pos, and i in the following algorithm to find the smallest element in a sequence.
def find_smallest(sequence):
smallest_so_far = sequence[0]
smallest_pos = 0
i $=1$
while i < len(sequence) :
if sequence[i] < smallest_so_far :
smallest_pos = i
smallest_so_far = sequence[i]
i += 1
return smallest_pos

1．7 State and prove a loop invariant to show that the following loop clears the list sequence，that is，it sets all of its positions to None．Your loop invariant should explain and relate the variables sequence and i ．

```
i = 0
while i < len(sequence):
    sequence[i] = None
    i += 1
```

From the correctness proof of bounded_linear_search:
By Invariant 1.c [i is the number of iterations], after at most n iterations, $\mathrm{i}=n$ and the guard will fail.

From the correctness proof of binary_search (rewritten):
Let i be the number of iterations completed. Suppose $i \geq \lg n$. Then $2^{i} \geq n$ and $\frac{n}{2^{i}} \leq 1$.
By Invariant 3.b, [high - low $\leq \frac{n}{2^{i}}$], we have high - low ≤ 1 and the guard fails.
def bounded_linear_search(sequence, P):

```
\(a_{0}\) found = False
    i = 0
    while not found and \(i<l e n(s e q u e n c e): ~ a_{1}(n+1)\)
    \(a_{2} n \quad\) found \(=P\) (sequence[i])
        i += 1
    if found): \(a_{3}\)
    \(a_{4}\) return i - 1
    else :
    a5 return -1
\[
\begin{aligned}
T_{b l s}(n) & =a_{0}+a_{1}(n+1)+a_{2} n+a_{3}+\max \left(a_{4}, a_{5}\right) \\
& =b_{0}+b_{1} n
\end{aligned}
\]
```

def binary_search(sequence, T0, item):

```
\(c_{0}\) low \(=0\)
    high = len(sequence)
    while high - low > 1 : \(c_{1}(\lg n+1)\)
    \(c_{2} \lg n\) mid \(=(\) low + high \() / 2\)
        compar = TO(item, sequence[mid])
        if compar < 0): \# item comes before mid
            high = mid
    elif compar > 0 : \# item comes after mid
            low \(=\) mid +1
    else :
            \# item is at mid
            assert compar == 0
            low = mid
            high \(=\) mid +1
    if low < high and TO(item, sequence[low]) == 0): c
    \(c_{4}\) return low
    else :
        c5 return -1
```

$$
\begin{aligned}
T_{b s}(n) & =c_{0}+c_{1}(\lg n+1)+c_{2} \lg n+c_{3}+\max \left(c_{4}, c_{5}\right) \\
& =d_{0}+d_{1} \lg n
\end{aligned}
$$

def selection_sort(sequence, T0):
for i in range(len(sequence)): $e_{0}+e_{1} n$
min_pos = i
$\min =$ sequence[i]
for \mathbf{j} in range($\mathbf{i}+1$, len(sequence) $): e_{3} n+e_{4} \sum_{i=0}^{n-1}(n-i-1)$
if TO(sequence[j], min) < 0 :
$\min =$ sequence $[\mathbf{j}] \quad \quad e_{5} \sum_{i=0}^{n-1}(n-i-1)$
min_pos $=j$
sequence[min_pos] = sequence[i]
sequence[i] = min

$$
T_{s e l}(n)=f_{1}+f_{2} n+f_{3} n^{2}
$$

- $\exists T: D \rightarrow \mathbb{N}$ relating input to running time on some platform. Interpret the codomain \mathbb{N} as natural numbers in some unit time.
- $\nexists T_{\text {absolute }}: \mathbb{N} \rightarrow \mathbb{N}$ relating input size to running time on some platform. Interpret the domain \mathbb{N} as the number of items in the list (or other structure, for other algorithms).
$-\exists T_{\text {worst }}: \mathbb{N} \rightarrow \mathbb{N}$ relating input size to the maximum running time on some platform for all inputs of the given size.
$-\exists T_{\text {best }}: \mathbb{N} \rightarrow \mathbb{N}$ relating input size to the minimum running time on some platform for all inputs of the given size.
$-\exists T_{\text {expected }}: \mathbb{N} \rightarrow \mathbb{N}$ relating input size to the expected value of the running time on some platform over all inputs of the given size.

What is big-oh notation?
Big-oh is a way to categorize functions:
$O(g)$ is the set of functions that can be bounded above by a scaled version of g.
$f(n)=O(g(n))$ (or, more properly $f \in O(g))$ means
$\exists c, n_{0} \in \mathbb{N}$ such that $\forall n \in\left[n_{0}, \infty\right), f(n) \leq c g(n)$

Objections to and misconceptions of big-oh notation take forms such as

- Big-oh notation specifies only an upper bound of running time, which might be widely imprecise.
- Big-oh notation measures only the worst case, when the best case or the typical case might be much better.
- Big-oh ignores constants, which can greatly affect running time in practice.
- Algorithms that have the same big-oh category can have widely different running times in practice.
- Big-oh considers only the size of the input, when in fact other attributes of the input can greatly affect running time.
$\Theta(g)=\left\{f: \mathbb{N} \rightarrow \mathbb{N} \mid \exists c_{0}, c_{1}, n_{0} \in \mathbb{N}\right.$ such that $\left.\forall n \in\left[n_{0}, \infty\right), c_{0} g(n) \leq f(n) \leq c g(n)\right\}$

Algorithmic element 1

Can you jump directly to the thing you're looking for?

Algorithmic element 2

Are you descending a binary tree of the data?
Algorithmic element 3
Do you need to touch every element in the data?
Algorithmic element 4
For every element, do you need to descend a tree, or for every element in the tree, do you touch every element?

Algorithmic element 5

For every element in the data, do you need to a suboperation on the rest of the data?

Algorithmic element 6

Do you need to consider all combinations of input elements?

```
int merge_sort_r(int sequence[], int aux[], int low, int high)
{
    if (low + 1 >= high)
        return 0;
    else {
        int compars = 0; // the number of comparisons
        int midpoint = (low + high) / 2; // index to the middle of the range
        int k, n;
        n = high - low;
        compars += merge_sort_r(sequence, aux, low, midpoint);
        compars += merge_sort_r(sequence, aux, midpoint, high);
        compars = merge(sequence, aux, low, high);
        return compars;
    }
}
```

$$
C_{m s}(n)= \begin{cases}0 & \text { if } n \leq 1 \\ n-1+2 C_{m s}\left(\frac{n}{2}\right) & \text { otherwise }\end{cases}
$$

$$
\begin{aligned}
\sum_{i=0}^{\lg n-1} 2^{i} \cdot\left(\frac{n}{2^{i}}-1\right) & =\sum_{i=0}^{\lg n-1} n-\sum_{i=0}^{\lg n-1} 2^{i} \\
& =n \lg n \quad-n+1
\end{aligned}
$$

```
int quick_sort_r(int sequence[], int low, int high)
{
    if (low + 1 >= high) return 0;
    int i, j, temp;
    int compars = 0;
    for (i = j = low; j < high-1; j++) {
        compars++;
        if (sequence[j] < sequence[high-1])
            {
                temp = sequence[j];
                sequence[j] = sequence[i];
            sequence[i] = temp;
            i++;
        }
    }
    temp = sequence[i];
    sequence[i] = sequence[j];
    sequence[j] = temp;
    return compars + quick_sort_r(sequence, low, i)
        + quick_sort_r(sequence, i+1, high);
}
```


$$
(n-1)+(n-2)+(n-3)+\cdots+1+0=\sum_{i=1}^{n-1} i=\frac{n \cdot(n-1)}{2}=\frac{n^{2}-n}{2}
$$

Coming up:
Due Friday, Jan 20 (end of day):
Read Sections 1.(3 \& 4)
Do Exercises 1.(17-19)
Take quiz
Due Tues, Jan 24 (end of day):
Read Section 2.1
Do Exercise 1.11
Take quiz

