
Coming up:

Due Fri, Jan 27: (end of the day)
Read (or finish reading ) Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “basic data structures” practice problems (suggested by Mon, Jan 30)
Do “Implementing ADTs” project (suggested by Wed, Feb 1)

Due Wed, Feb 1: (class time)
Read Section 3.1
Do Exercises 2.(22–24)
Take sorting quiz



This week and next week (Chapters 2 and 3):

▶ Abstract data types (Wednesday)

▶ Data Structures (today and Monday)

▶ Programming practices (Monday)

▶ Linear time sorting (next week Wednesday and Friday)

Today:

▶ Ex 1.11

▶ ADT review

▶ Data structure categories

▶ List vs array

▶ Abstractions

▶ Adapter pattern



def is_palindrome(str) :

palindromic = True

n = len(str)

i = 0

while palindromic and i < n // 2 :

palindromic = str[i] == str[n-i-1]

i += 1

return palindromic

Invariant (Loop of is palindrome)

1. ∀ j ∈ [0, i − 1), str[j ] = str[n − j − 1]

2. palindromic iff (i = 0 or str[i − 1] = str[n − i ])

3. i is the number of iterations completed



best case worst case expected case

binary search

bounded linear search

selection sort

merge sort

quick sort



The “canonical ADTs”:

List. Linear collection with sequential and random access.

Stack. Linear collection with LIFO access.

Queue. Linear collection with FIFO access.

Set. Unordered collection with binary membership.

Bag. Unordered collection with enumerated membership.

Map. Unordered collection of associations between keys and values.
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The four basic ways to implement an ADT:

▶ Use an array

▶ Use a linked structure

▶ Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

▶ Adapt an existing implementation of another ADT.
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