
Coming up:

Due Fri, Jan 27: (end of the day)
Read (or finish reading ) Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “basic data structures” practice problems (suggested by Mon, Jan 30)
Do “Implementing ADTs” project (suggested by Wed, Feb 1)

Due Wed, Feb 1: (class time)
Read Section 3.1
Do Exercises 2.(22–24)
Take sorting quiz



This week and next week (Chapters 2 and 3):

▶ Abstract data types (Wednesday)

▶ Data Structures (today and Monday)

▶ Programming practices (Monday)

▶ Linear time sorting (next week Wednesday and Friday)

Today:

▶ Ex 1.11

▶ ADT review

▶ Data structure categories

▶ List vs array

▶ Abstractions

▶ Adapter pattern



def is_palindrome(str) :

palindromic = True

n = len(str)

i = 0

while palindromic and i < n // 2 :

palindromic = str[i] == str[n-i-1]

i += 1

return palindromic

Invariant (Loop of is palindrome)

1. ∀ j ∈ [0, i − 1), str[j ] = str[n − j − 1]

2. palindromic iff (i = 0 or str[i − 1] = str[n − i ])

3. i is the number of iterations completed



best case worst case expected case

binary search

bounded linear search

selection sort

merge sort

quick sort



The “canonical ADTs”:

List. Linear collection with sequential and random access.

Stack. Linear collection with LIFO access.

Queue. Linear collection with FIFO access.

Set. Unordered collection with binary membership.

Bag. Unordered collection with enumerated membership.

Map. Unordered collection of associations between keys and values.



List

Stack
LIFO access

Queue

Random access

FIFO access

Map
Lookup by index Lookup by key

Whole−number value

Any value

Set

Bag

Items

Associations Binary membership

Enumerated membershp



The four basic ways to implement an ADT:

▶ Use an array

▶ Use a linked structure

▶ Use an “advanced” data structure, varying and/or hybridizing linked structures
and arrays

▶ Adapt an existing implementation of another ADT.



unused

frontback

14 3 8 17 11 2325 6

23

11

17

8

3 14

25

6



Abstract
data type

data structure

Simple

Abstract
data type

data structure

Simple

Abstraction

data structure

Advanced 

data structure

data structure

ADT

Array queue

abstraction

Array

Queue

Ring buffer



enqueue(E)

front()

remove()

isEmpty()

internal.add(item);

<<interface>>

push(E)

top()

pop()

isEmpty()

Stack

− internal:List

ListQueue

enqueue(E)

front()

remove()

isEmpty()

− internal:List

ListStack

push(E)

top()

pop()

isEmpty()

<<interface>>

Queue

im
p
le

m
e
n
ts

im
p
le

m
e
n
ts

List
<<interface>>

add(E)

set(int,E)

remove(int)

insert(int,E)
size()

get(int)



Client

Adapter

operationA()

<<interface>>

Target

original

operationA()

original.operationB()

Original

operationB()



Bag

Queue

Stack

MapBag

ListBag

Map ListQueue

ArrayQueue

ListStack
ArrayStack

List

ArrayList

LinkedList

MapList

ListMap

ArrayMap

Set
MapSet

ListSet

BagSet



Coming up:

Due Fri, Jan 27: (end of the day)
Read (or finish reading ) Section 2.(2, 4, & 5)
Take data structures quiz

Also:
Do “basic data structures” practice problems (suggested by Mon, Jan 30)
Do “Implementing ADTs” project (suggested by Wed, Feb 1)

Due Wed, Feb 1: (class time)
Read Section 3.1
Do Exercises 2.(22–24)
Take sorting quiz


