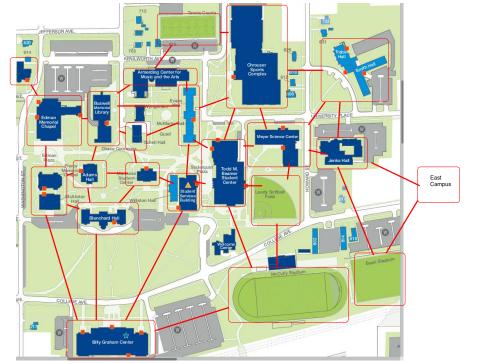
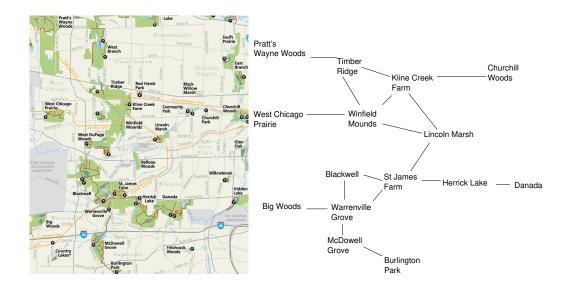
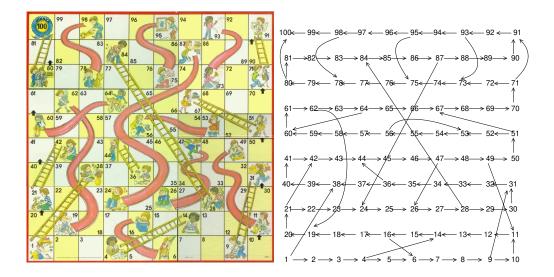
Chapter 4, Graphs:

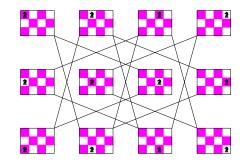
- Concepts and implementation (Today)
- Traversal (next week Monday)
- Minimum spanning trees (next week Wednesday and Friday)
- ► Single-source shortest paths (Feb 22 and 24)

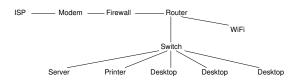

Today:

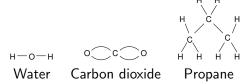

- Recent quiz questions
- Applications of graphs
- Vocabulary, taxonomy, and theory
- Representing and implementing graphs


Indicate the worst case running time for each operation in each implementation of a priority queue.

	ListPriorityQueue	SortedListPriorityQueue	HeapPriorityQueue
insert()	⊖(1)	$\Theta(n)$	$\Theta(\lg n)$
max()	$\Theta(n)$	Θ(1)	$\Theta(1)$
extractMax()	$\Theta(n)$	$\Theta(1)$	$\Theta(\lg n)$
contains()	$\Theta(n)$	$\Theta(n)$	$\Theta(n)$


- 3.26 In the NaiveNSet, why does the add() method have an @Override annotation
 but range(), complement(), union(), intersection(), and difference() do
 not?
- **3.27** Explain the + 1 in the array creation new byte[range / 8 + 1] in the BitVecNSet constructor.





- Graph
- ► Vertex (compare *node*)
- ► Edge (compare *link*)
- ► Incident
- Adjacent
- Degree
- Complete
- Dense

- Sparse
- Directed graph
- Undirected graph
- ▶ Parallel edge
- Self loop
- Simple graph
- Weighted graph

Adjectives

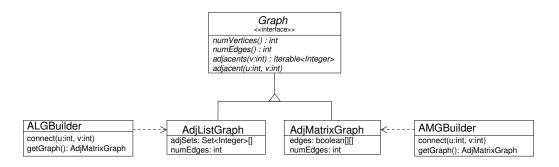
Trivial Having only one vertex and no edges.

Simple Having no repeated *vertices* (except, possibly, the initial and terminal).

Closed Having the same vertex as initial and

terminal.

Nouns


Walk An alternating sequence of vertices and edges, each edge coming between its end points.

Path A walk with no repeated *edge* (repeated vertices are ok).

Circuit A closed path (no repeated edges, initial and terminal the same).

Cycle A simple circuit (no repeated edges or vertices, except the initial and terminal, which are the same).

	Adjacency matrix	Adjacency list
Space	$\Theta(V^2)$	$\Theta(V+E)$
adjacent(u, v)	$\Theta(1)$	$\Theta(deg(u))$ (expected case)
getAdjacents(u)	$\Theta(V)$	$\Theta(deg(u))$

Coming up:

Do heaps and priority queue project (suggested by Mon, Feb 13)
Do bit vector and N-set project (suggested by Wed, Feb 15)

Due **Wed, Feb 15** (but spread it out): Read Section 4.(1–3) Do Exercises 4.(26-29). Take graph quiz