
590 Chapter 6. Dynamic programming

result. Any one of the given recursive formulas will do. The

important thing is to store the subproblems’ total probabilities

in a table so that total probabilities for later subproblems can

be computed from those for earlier subproblems instead of

being computed from scratch.

Exercises n

6.46 State a claim of optimal substructure for this problem

formally and prove it. Use the proof of Lemma 2 and your

answer to Exercise 6.25 as examples of how to structure the

proof.

v v v

Building the tables for the optimal BST problem is sim-

ilar to the algorithm for optimal matrix multiplication. Since

the base cases correspond to the major diagonal of the table

and the cells only in the “upper left triangle” of the table cor-

respond to relevant subproblems, we visualize this table as

a pyramid. The top-level problem is at the pinnacle, position

C[0][n − 1]. Here we show the combined tables for the best

total weighted depths and the keys for the best roots using

our sample instance. Our algorithm requires a third table for

the total probabilities, which, for simplicity, we don’t show.

2.916/2

2.125/5

.818/1 .691/6

.301 .485 .33 .064 .097 .305 .482 .288

3.205/2

2.819/5

2.119/2 2.567/5

1.458/61.873/51.783/21.538/2

1.202/2 1.247/21.24/1 1.212/5 1.227/6

1.038/61.018/6.613/5.666/2.975/21.08/1

.747/1 .439/2 .216/4 .438/5 .829/6

7

6

5

4

3

2

1

0

0

1

2

3

4

5

6

7

i j

To populate these tables, we iterate over the diagonals

from the major diagonal at the base of the pyramid to the

6.5. Optimal binary search trees 591

pinnacle cell at position (0, n − 1). As in the table-populating

algorithm for optimal matrix multiplication, we use a variable

d to identify a diagonal by the difference between i and j for

the cells in that diagonal. For each cell, we evaluate options

for r ∈ (i, j) plus special cases for r = i and r = j.

def opt_bst(key_probs, miss_probs):

assert len(key_probs) + 1 == len(miss_probs)

n = len(key_probs)

total_probs[i][j] is the sum of all the key probabilities in range [i,j]

and all the miss probabilities in range [i,j+1]

total_probs = [[None for j in range(n)] for i in range(n)]

total_weighted_depths[i][j] indicates the minimum total weighted depth

for any try for keys in range [i,j]

total_weighted_depths = [[None for j in range(n)] for i in range(n)]

decisions[i][j] indicates the key at the root of the best tree for range [i,j]

decisions = [[None for j in range(n)] for i in range(n)]

Base cases for trees with only one key

for i in range(n):

total_probs[i][i] = miss_probs[i] + key_probs[i] + miss_probs[i+1]

total_weighted_depths[i][i] = (2 * miss_probs[i] + key_probs[i] +

2 * miss_probs[i+1])

decisions[i][i] = i

For each diagonal, identified by the difference between indices

for d in range(1, n) :

For each cell or subproblem in that diagonal, i, j

for i in range(n - d):

j = i + d

The total probability for range [i, j]

total_probs[i][j] = miss_probs[i] + key_probs[i] + total_probs[i+1][j]

The cost of making key i the root, which is our initial

best-so-far

least_subtree_cost = miss_probs[i] + total_weighted_depths[i+1][j]

best_root = i

592 Chapter 6. Dynamic programming

For each candiate root r between i and j exclusive

for r in range(i+1,j):

The cost of making key r the root

current_subtree_cost = (total_weighted_depths[i][r-1] +

total_weighted_depths[r+1][j])

If its cost is better than best so far, it's the new best so far

if current_subtree_cost < least_subtree_cost :

least_subtree_cost = current_subtree_cost

best_root = r

The cost of making key j the root

current_subtree_cost = total_weighted_depths[i][j-1] + miss_probs[j+1]

If its cost is better than best-so-far, it's the new best-so-far

if current_subtree_cost < least_subtree_cost :

least_subtree_cost = current_subtree_cost

best_root = j

Record the best option and corresponding cost in the tables

total_weighted_depths[i][j] = total_probs[i][j] + least_subtree_cost

decisions[i][j] = best_root

From its similarity to the algorithm for optimal matrix

multiplication, we recognize the running time for building the

tables as Θ(n3). See Exercise 6.47 for details.

The value C[0][n − 1] in total_weighted_depths[0][n-1]

gives us the cost of the best tree for the given keys with their

probabilities. As with other dynamic programming problems,

a more useful result is the tree itself. Exercise 6.48 asks you to

write a function that reconstructs the optimal binary search

tree using a populated decision table, but for Project 6.2 we

have an alternate strategy. Instead of reconstructing the tree

after building the table, we build the actual optimal subtrees

along with the table. Instead of a table of decisions as in the

algorithm above, we maintain a table such that in position

(i, j) we store the root of the best subtree for keys ki through

k j.

Suppose r is the index of the key that is the best root for

a subtree containing keys ki through k j. Instead of storing r

in the decision table at position (i, j), we allocate a new node

for the binary tree with kr as the key. Its children are the

roots of the best subtrees for keys ki through kr−1 and keys

6.5. Optimal binary search trees 593

kr+1 through k j, but those nodes have already been allocated

and stored in the table of nodes at positions (i, r − 1) and

(r + 1, j). We store this newly allocated node in position (i, j).

When the table-building algorithm terminates, we return the

node in position (0, n − 1) of the node table as the root of the

entire tree. No reconstruction is necessary because the tree is

already built.

The last thing to consider about this algorithm is the sense

in which the tree produced is optimal. Remember that the

cost model is the expected number of nodes to be visited in

a lookup. To optimize the expected case under that model,

we sacrifice optimality for the worst case. More to the point,

though, is how well this cost model predicts real performance.

As we observed at the end of Section 3.3 and again in

Section 5.6, when the binary tree abstraction is implemented

with linked memory, it has the inherent weakness of poor

data locality. Optimizing the number of nodes that need to be

visited on average has meager pay-off in real performance if

each node is allocated in a different page of virtual memory.

Optimizing a data structure to reduce page faults, as is done

with a B-tree, is likely to have a bigger, positive effect on

performance than optimizing the tree structure itself. The

optimal binary search tree algorithm is a beautiful solution

to a specific problem, but before deploying it, one must ask

whether it solves the right problem.

Exercises n

6.47 Demonstrate the Θ(n3) complexity for opt_bst() by

counting the number of iterations of the innermost loop,

which is also the sum of all the options to be considered

for all the subproblems. Notice that for the major diagonal

there are n cells with 1 option each (although that corre-

sponds to the loop of base cases before the big loop), the

diagonal above that has n − 1 cells with two options each,

and the pinnacle has 1 cell with n options. Thus the to-

tal number of options considered for all subproblems is

∑
n
i=1 i(n − i + 1). Solve this summation.

6.48 Write a function build_tree() that takes the list of keys,

the decisions table, and indices i and j and returns an

594 Chapter 6. Dynamic programming

optimal tree for keys ki to k j by recursively descending

into the decisions table.

v v v

Project 6.2: Optimal binary search trees q

The goal of this project is to practice dynamic programming

by implementing the algorithm for building optimal binary

search trees.

The code base for this project has packages adt, impl,

and test, as usual, but also package optbstutil. The class

optbstutil.OptBSTUtil has methods for reading data from

disk and computing weighted depths. The class impl.OptimalBSTData

represents a problem instance, encapsulating the keys, values,

key probabilities, and miss probabilities.

The class impl.OptimalBSTMap is similar to the BST map

classes in Chapter 5 but simpler since it does not support the

remove() method, and the put() method is supported to only

overwrite values for keys already in the map—and, hence,

there is no code for tree rotations. Moreover, the class has

no code for building the tree itself. Instead, its constructor

takes a node which is the root of an externally-built tree. The

node types are nested in impl.OptimalBSTMap, but they are

protected, not private, so they are visible to other classes in

the same package.

Your task is to write the algorithm for building the tree by

finishing the method buildOptimalBST() in class impl.OptimalBSTMapFactory.

The method takes the keys, values, key probabilities, and miss

probabilities and returns an OptimalBSTMap for that problem

instance. Your solution should allocate and populate tables

for total weighted depths, probabilities, and roots of optimal

subtrees. The last thing the method does is pass the node at

the pinnacle of the tree table to the OptimalBSTMap construc-

tor.

Use test.OBSTTest to test.

v v v

