Chapter 6, Hash tables:

- General introduction; separate chaining (Today)
- Open addressing (Wednesday)
- Hash functions (Friday)
- Perfect hashing (next week Monday)
- Hash table performance (next week Friday)

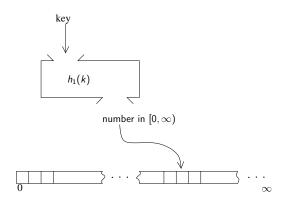
Today:

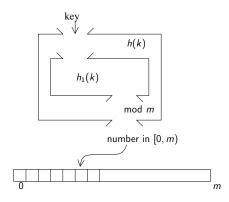
- ▶ The story of the Map ADT
- Goals and terminology of the unit
- Separate chaining implementation
- Variables and metrics of performance

Find Search the data structure for a given key

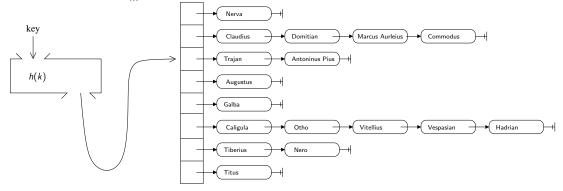
Insert Add a new key to the data structure

Delete Get rid of a key and fix up the data structure

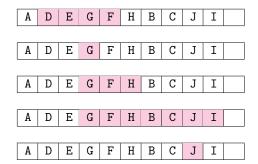

containsKey() Find


get() Find

put() Find + insert


remove() Find + delete

	Find	Insert	Delete
Unsorted array	$\Theta(n)$	$\Theta(1) [\Theta(n)]$	$\Theta(n)$
Sorted array	$\Theta(\lg n)$	$\Theta(n)$	$\Theta(n)$
Linked list	$\Theta(n)$	$\Theta(1)$	Θ(1)
Balanced BST	$\Theta(\lg n)$	$\Theta(1) [\Theta(\lg n)]$	$\Theta(1) [\Theta(\lg n)]$
What we want	$\Theta(1)$	$\Theta(1)$	$\Theta(1)$



Separate chaining: $\frac{n}{m} < \alpha$ where $\alpha > 1$

Open addressing: $\frac{n}{m} < \alpha$ where $\alpha < 1$

Α	D	Е	G	F	Н	В	С	J	I	
Α	D	Е	G	F	Н	В	С	J	Ι	
Α	D	Е	G	F	Н	В	С	J	I	
										,
Α	D	Е	G	F	Н	В	С	J	I	
Α	D	Е	G	F	Н	В	С	J	I	

Unit agenda:

- ► Solution 1: Separate chaining (plus basic concepts and terminology). (**Today**)
- ► Solution 2: Open addressing. (Wednesday)
- ► All about hash functions. (Friday)
- Solution 3: Perfect hashing. (next week Monday)
- ► Looking carefully at performance. (next week Wednesday)

Hash table terminology:

- ▶ Hash table: A data structure, not an ADT . . .
- ▶ Bucket: A position in the (main) array, or, abstractly, an index in the range [0, m).
- ▶ Hash function: A function from keys to buckets.
- ▶ Collision: When two keys are hashed to the same bucket.
- ▶ Chain: A sequence of keys that needs to be searched through to find a given key.
- ▶ Load factor (α) : An upper bound on the ratio of keys to buckets.

Factors in best vs worst vs expected case:

- State of the table
- ► Length of the bucket
- ▶ Position of key in the bucket.

Parameters that can be adjusted for engineering a hash table:

- ightharpoonup Load factor α
- Rehash strategy
- ► Hash function

Hash functions should distribute the keys uniformly and independently.

Uniformity:

$$P(h(k)=i)=\frac{1}{m}$$

Independence:

$$P(h(k_1) = i) = P(h(k_1) = i \mid h(k_2) = j)$$

Coming up:

Do Optimal BST project (suggested by today, Monday, April 10)

Due today, Mon, Apr 10 (end of day)
Take quiz (on Sections 7.(1 & 2), end of day)

Due Tues, Apr 11
Do practice problem, recreating separate chaining example

Due **Thurs Apr 13**Read Section 7.3
Do Exercises 7.(4,5,7,8)
Take quiz