
Computer Science 345
Test 2 Practice problems
March 21, 2023

The test itself will have three questions, one each from the categories of ADTs (draw-
ing from Chapters 1–3, so including bit vectors and heaps for example), graphs (Chap-
ter 4), and BSTs (Chapter 5). This set of practice problems includes two problems
from each category.

Pull from the repository. You will find the starter code for these practice problems in
a folder called test2-practice under the practice folder. Make an Eclipse project
in the test2-practice, because in it each problem has its own package (for example,
sortedArrayBag), and all the classes for that problem are in that package. This code
does not use the package names adt, impl, etc from our convention for the project
code base.

A solution to these problems can be found in the folder test2-practice-soln.

1. [ADTs.] The class sortedArrayBag.SortedArrayBag implements a bag like we
have seen in class but with the following simplifications or assumptions.

• The keys are of type String (the class is not generic).

• The remove() and iterator() methods are not supported.

• All (potential) keys are known ahead of time and are passed to the constructor
through an iterator that returns them in sorted order. (All the keys have 0
counts until the add() method is called for them.)

An example of when a bag like this would be useful is counting word frequencies in a
text when one already knows the text’s vocabulary.

Finish the class sortedArrayBag.SortedArrayBag. The instance variables, construc-
tor, and isEmpty() method are provided. The instance variable keys contains the
given keys in sorted order. Specifically, write the methods add() and count() so
that they run in worst case O(lg n) time, where n is the number of keys passed to the
constructor. Write the method size() so that it runs in O(n) time.

You may assume that add() is called only with keys that were initially given to the
constructor (you do not need to check for this). If count() is called with a key not
given to the constructor, then it should return 0.

(Hint: The stub for a suggested helper method, findIndex(), is provided. Since
keys is a sorted array, how can you write this method so that add() and count()

are logarithmic?)

2. [ADTs.] Recall that an array forest is a data structure that uses an array to
represent a collection of trees (that is, a forest). Specifically, in an array forest with n

1



nodes, each node in the forest is identified by a whole number in the range [0, n), and
an array indexed by the nodes’ numbers indicates each node’s parent in the forest. A
node that is the root of its tree has itself as its parents.

For example, the collection of trees shown below left can be represented by the array
shown below right.

5

94

0 3 6

2

1

7

8

10 12

11

4 2 6 4 4 4 4 7 7 9 11 11 11
0 1 2 3 4 5 6 7 8 9 10 11 12

The class arrayForest.ArrayForest implements an array forest. Finish the follow-
ing two methods:

• depth() takes a node p (indicated by number) and determines p’s depth, that
is, its number of links p is away from the root of its tree. For example, in the
array forest above, the depth of node 1 is 3. Use TestDepth to test.

• ancestorChain() takes a node p (indicated by number) and returns an iterator
that returns the nodes in the path from p to its root. For example, in the
array forest above, a call to ancestorChain(1)—that is, starting from node
1—returns an iterator which returns 1, 2, 6, and 4 on successive calls to next().
Use testIterator to test.

3. [Graphs.] A cycle is a path in a graph that begins and ends at the same vertex.
Write the method checkCycle.CheckCycle.checkCycle() that takes a graph and a
starting vertex and determines whether there is a cycle of length at least two beginning
and ending with that vertex. (Since we assume the graph has no self loops, cycles of
length one are impossible.)

Use TestCheckCycle to test.

4. [Graphs.] The game Chutes and Ladders consists in a game board and a spinner.
The game board has a sequence of spaces, and additionally some spaces have ladders
that connect them to spaces further on the board, and some spaces have chutes that
connect them to spaces earlier on the board.

Each player starts on space 0, and on each turn the player uses the spinner to deter-
mine how many spaces he or she may move ahead, from 1 to 6 spaces. However, if
the player lands on a space that is at the bottom of a ladder, then the player moves
to the space on the top of that ladder on the same turn; and similarly if the player
lands on a space that is the top of a chute, then the player moves back to the space

2



at the bottom of the chute on the same turn. A player wins by landing on the last
space. (See the next page for an example.)

The class cheatsAndLadders.ChutesAndLaddersBoard represents a board for this
game. The two operations are size() which gives the number of spaces and reachableSpaces()
which, for a given space, returns an iterator over the spaces reachable from that space
in one spin. For example, in the board shown below, the spaces reachable from 5 are
6, 12, 8, 9, 3, and 11. That is, from space 5 one could, by spinning values from 1
through 6, move to spaces 6, 7, 8, 9, 10, and 11, except that landing on 7 takes you
ahead to space 12 by a ladder, and landing on space 10 takes you back to space 3 by
a chute.

0 1 2 3 4

56789

131211 1410

1516171819

20 21 22 23 24

1

2

3

4

5

6

start

finish

Write the static method fewestMoves() in class cheatsAndLadders.CheatsAndLadders
that takes a board and determines the fewest number of moves that are required to
get from the start (position 0) to the final space (position board.size() - 1). For
example, in the board shown above, space 24 can be reached in just two moves: Spin-
ning a 4 on the first move allows one to take the ladder from space 4 to space 21;
then spinning a 3 on the second move takes one to space 24.

User TestCL to test.

5. [BSTs.] Complete the method verifyAVL.VerifyAVL.verifyAVL(), which takes
a Node as the root of a binary tree and determines whether the tree rooted at the node
fulfills the AVL property. Notice that in order for a tree to fulfill the AVL property,
all of its subtrees much fulfill the AVL property also.

For simplicity, the class verifyAVL.Node does not contain any keys or values, only
links to children. Also, there is no “nully” object; the Java value null is used for
empty (sub)trees.

3



Recursion is recommended. You may want to write one or more helper methods.
Also, the Node class has a public instance variable info of type Object, where you
can store any information you want about the node. (My own solution did not use the
info instance variable. Also in my own solution verifyAVL() is not itself recursive,
but called a recursive helper method.)

6. [BSTs.] Recall that any sorted array can be turned into a binary search tree. For
example, if the length of the array were one less than a power of 2, then we could
turn it into a balanced binary search tree this way:

15 49

8 25 38 58

5 12 23 29 32 43 56 63

5 8 15 2312 25 29 31 32 38 43 49 56 58 63 31

If the length of the array were not one less than a power of 2, we could convert the
array into one of the varieties of nearly-balanced trees.

Consider the simplified implementation of red-black trees represented by the class
sorted2RB.RBNode. This represents only the data (keys, links, and redness). Any
operations such as lookup, insertion, and rotations would need to be implemented
externally.

Complete the method sorted2RB.Sorted2RB.sorted2RB() which takes a sorted ar-
ray of Strings and returns an equivalent red-black tree represented by its root, an
instance of RBNode. For example, given the array on the left, sorted2RB() could
return the tree on the right.

A B C D E

C

B E

A D

Recursion is recommended, though you may choose to make a recursive helper method
rather than make sorted2RB() itself be recursive. Also, in the example above the
red-black tree happens to be left-leaning, and in my own solution the resulting tree
always is a left-leaning red-black tree. That’s not required, though—your solution

4



could produce different trees from mine, as long as they are valid red-black trees,
valid BSTs, and contain all and only the given keys.

Use TestSTRB to test.

5


