Computer Science 345

Test 4 Practice problems

April 20, 2023
The test itself will have three questions, one each from the categories of dynamic programming (Chapter 6), hash tables (Chapter 7), and strings (Chapter 8). This set of practice problems includes two problems from each category.

Pull from the repository. You will find the starter code for these practice problems in a folder called test4-practice, and I recommend you make an Eclipse project in that folder. A with the practice problems for test 2, code for each problems will be in its own package.

A solution to these problems can be found in the folder test4-practice-soln.

1. [Dynamic programming.] See Project 6.1.a in the textbook (pg 591). This is the "Hero-Hall" problem. The method to finish is HeroHall.bestTreasure() in the herohall package. Use herohall. HHTest to test.
2. [Dynamic programming.] Ronald Howard introduced the concept of a micromort, which is a one-in-a-million chance of dying ${ }^{1}$. Micromorts (abbreviated $\mu \mathbf{q}$) are used to assess the risk involved in various activities. For example, skydiving carries a risk of 8μ per jump, while climbing the Matterhorn carries a risk of 2840μ per ascent attempt.

Suppose you want to minimize your risk of dying while traveling about a city whose streets are laid out in a rectangular grid. Using data based crime crime rates, traffic accidents, etc, you have calculated the risk that each intersection carries. For example, suppose you wanted to travel from point $(0,0)$ (lower corner) to point (3, 2) (upper corner) in the grid below. The safest route, which is shown, has a risk of 2.3μ.

2	3.8	1.75	0.12	0.1
1	0.01	2.9	1	1
	0.8			
	0.2	0.7	0.08	1.5
0		1	2	3

Assume that you are considering routes that always move you closer to your destinationyou are unwilling to take a roundabout route even if it is safer. Thus your route will consist only of moves to the right and up in the grid.

Let M be a table that represents the risk of each intersection such that $M[i][j]$ is the number of $\mu \mathrm{m}$ carried by intersection (i, j). Let $R[i][j]$ be the number of $\mu \mathrm{m}$ the safest route from starting point $(0,0)$ to intersection (i, j), including the risk of intersection (i, j) itself. The recursive characterization of this problem is

[^0]\[

R[i][j]=M[i][j]+ $$
\begin{cases}0 & \text { if } i=0 \text { and } j=0 \\ R[0][j-1] & \text { if } i=0 \text { and } j>0 \\ R[i-1][0] & \text { if } i>0 \text { and } j=0 \\ \min (R[i-1][j], R[i][j-1]) & \text { otherwise }\end{cases}
$$
\]

Assume the destination is the top right corner. Thus if the grid is $n \times m$, then the top-level problem is $R[n-1][m-1]$.
Finish the method micromort.Micromort.findFewestMicromorts(), which takes a two-dimensional array of doubles representing the risks at each intersection and returns the risk of the safest path. (The risks tend to be very small-less than 1μ g for many intersections.)
Use micromort. MRTest to test.
3. [Hashing.] In an open-addressing hashtable, define a key's penalty to be the number of positions beyond its ideal place that need to be inspected in order to find that key. For example, in the hash table below, suppose all three keys A, B, and C hash to position 3 :

In this case, A's penalty is $0, B$'s penalty is 1 , and C's penalty is 2 .
Complete the function averagePenalty () in class avePenalty. StatisticalHashtable which returns the average penalty for all keys in the table. Assume linear probing and that there are no breaks in any chain (the class, in fact, does not even support removal). For example, in the table shown above, the average penalty is $(0+1+2) \div 3=1$.

Use avePenalty. SHTest to test.
4. [Hashtables.] Consider a hashtable that uses an approach similar to open addressing but with a two-dimensional table for keys (and a parallel table for values). A key is stored in a position indicated by two indices (i, j). For example, in the key table below of size 5×5, the keys AXB, AXC, BXA are stored in positions $(1,3),(2,3)$, and $(2,4)$, respectively. Their values are stored in the same positions in a separate table, not shown.

To find a key's ideal place in this array, the two-dimensional hash table uses two hash functions, a "horizontal hash" and a "vertical hash," which compute the i coordinate and j-coordinate. In this example, suppose the keys mentioned above have the following horizontal and vertical hashes:

key	horizontal hash	vertical hash
AXB	1	3
AXC	2	3
BXA	1	3

In the case of a collision, the probe strategy searches for an alternative location by alternating between incrementing i and j (and wrapping around as necessary) until finding the key being searched for or an empty position. In this example, BXA collides with AXB in position $(1,3)$; the probe strategy then looks at $(2,3)$; since that position is filled by AXC, the probe strategy then looks at $(2,4)$, which is where BXA is. If $(2,4)$ were filled with a different key, then the probe would have continued with $(3,4)$, and then wrapped around vertically to $(3,0)$.

Implement this approach by writing the methods put(), get(), and containsKey() in the class twoDHash.TwoDHashMap. (For simplicity, there are no remove() or iterator () methods.) It is recommended that you finish the private method find() which can then be used as a helper method for put(), get(), and containsKey().

Assume that the table is square, $n \times n$; the dimension size is stored in instance variable n . The horizontal and vertical hashes are computed by methods hashHorz() and hashVert (). Note that although these methods return indices in $[0, n)$, the code implementing the probe strategy will still need to mod when wrapping around.

Use twoDHash. TDHMTest to test.
5. [Strings.] Consider the reduced form of the class TrieSet provided in package trie2Arry. Specifically, it has no remove() method and no separate TrieNode class. Instead of internal nodes, a TrieSet is itself a node, having other TrieSets as children.

Consider the problem of converting a set implemented as a trie into a sorted array of its keys. For example, the following trie

would produce the array [ANN, ANNA, ANNIKA, BETH, BETHANY, CARL].
This can be done recursively if the method is given the array to be filled (the code calling the method would create a big enough array to begin with), a starting position in the array (indicating how much of the array has already been filled with keys that come before the keys in the current subtrie), and a prefix for the keys in the subtrie (indicating the characters on the path to this subtrie), as in this method signature:
int trie2Array(String[] keys, int start, String prefix)

For example, for the node in the trie above with incoming link labeled T, the method would be called with start having value 3 (because the strings ANN, ANNA, and ANNIKA have already been put in the array) and prefix having value BET (because all the keys in that subtrie begin with BET).

Write the method trie2Array.TrieSet.trie2Array(), which populates the keys array and returns the number of keys added to the array by that subtrie.
(Hint, for what it is worth: Although this requires a fair amount of thinking, it does not require very much coding. My solution is only six lines long.)
Use trie2Array. T2ATest to test.
6. [Strings.] Consider the class trieTermRatio.TrieNode which represents a nnode such as could be used in a trie implementing a set. In particular, the class has instance variables children, which contains links to children indexed by character adjusted to 0 , and isTerminal, which indicates whether this node is the end of a route for a key in the set. All other set or map operations (besides add()) have been removed.

Write the static method terminalRatio()) in class triTermRatio.TermRatio which takes a TrieNode and computes what proportion of nodes are terminal in the trie
rooted at the given node. In other words, it computes the ratio of terminal nodes to all nodes. For example, the trie below contains keys THE, THEORY, THEME, and TUNE:

Since this tree has four terminal nodes out of twelve nodes total, its terminal ratio is $\frac{4}{12}=\frac{1}{3}=0.33333333333$.
(Hints: I can think of at least three equally good ways to do this. Also, since the number of terminals and the number of nodes are ints, make sure you cast correctly when computing the ratio, which is a double.)
Use trieTermRatio.TRTest to test.

[^0]: ${ }^{1}$ Ronald Howard, On Making Life and Death Decisions, 1980.

