
Computer Science 345
Test 4 Practice problems
April 20, 2023

The test itself will have three questions, one each from the categories of dynamic
programming (Chapter 6), hash tables (Chapter 7), and strings (Chapter 8). This
set of practice problems includes two problems from each category.

Pull from the repository. You will find the starter code for these practice problems
in a folder called test4-practice, and I recommend you make an Eclipse project in
that folder. A with the practice problems for test 2, code for each problems will be
in its own package.

A solution to these problems can be found in the folder test4-practice-soln.

1. [Dynamic programming.] See Project 6.1.a in the textbook (pg 591). This is
the “Hero-Hall” problem. The method to finish is HeroHall.bestTreasure() in the
herohall package. Use herohall.HHTest to test.

2. [Dynamic programming.] Ronald Howard introduced the concept of a micro-
mort, which is a one-in-a-million chance of dying1. Micromorts (abbreviated µA) are
used to assess the risk involved in various activities. For example, skydiving carries
a risk of 8µA per jump, while climbing the Matterhorn carries a risk of 2840µA per
ascent attempt.

Suppose you want to minimize your risk of dying while traveling about a city whose
streets are laid out in a rectangular grid. Using data based crime crime rates, traffic
accidents, etc, you have calculated the risk that each intersection carries. For example,
suppose you wanted to travel from point (0,0) (lower corner) to point (3, 2) (upper
corner) in the grid below. The safest route, which is shown, has a risk of 2.3 µA.

0.2

0.01

3.8

0.7

2.9

1.75

1.1

0.12

0.08 1.5

0.8

0.1

3

2

0 1 2

1

0

Assume that you are considering routes that always move you closer to your destination—
you are unwilling to take a roundabout route even if it is safer. Thus your route will
consist only of moves to the right and up in the grid.

Let M be a table that represents the risk of each intersection such that M [i][j] is
the number of µA carried by intersection (i, j). Let R[i][j] be the number of µA on
the safest route from starting point (0, 0) to intersection (i, j), including the risk of
intersection (i, j) itself. The recursive characterization of this problem is

1Ronald Howard, On Making Life and Death Decisions, 1980.

1



R[i][j] = M [i][j] +


0 if i = 0 and j = 0
R[0][j − 1] if i = 0 and j > 0
R[i− 1][0] if i > 0 and j = 0
min(R[i− 1][j], R[i][j − 1]) otherwise

Assume the destination is the top right corner. Thus if the grid is n ×m, then the
top-level problem is R[n− 1][m− 1].

Finish the method micromort.Micromort.findFewestMicromorts(), which takes
a two-dimensional array of doubles representing the risks at each intersection and
returns the risk of the safest path. (The risks tend to be very small—less than 1µA
for many intersections.)

Use micromort.MRTest to test.

3. [Hashing.] In an open-addressing hashtable, define a key’s penalty to be the
number of positions beyond its ideal place that need to be inspected in order to find
that key. For example, in the hash table below, suppose all three keys A, B, and C

hash to position 3:

X X X A B C X X X X X X X X X X X X X X

In this case, A’s penalty is 0, B’s penalty is 1, and C’s penalty is 2.

Complete the function averagePenalty() in class avePenalty.StatisticalHashtable
which returns the average penalty for all keys in the table. Assume linear prob-
ing and that there are no breaks in any chain (the class, in fact, does not even
support removal). For example, in the table shown above, the average penalty is
(0 + 1 + 2)÷ 3 = 1.

Use avePenalty.SHTest to test.

4. [Hashtables.] Consider a hashtable that uses an approach similar to open ad-
dressing but with a two-dimensional table for keys (and a parallel table for values).
A key is stored in a position indicated by two indices (i, j). For example, in the key
table below of size 5× 5, the keys AXB, AXC, BXA are stored in positions (1, 3), (2, 3),
and (2, 4), respectively. Their values are stored in the same positions in a separate
table, not shown.

2



0 1 2 3 4

0

1

2

3

4

AXB AXC

BXA

To find a key’s ideal place in this array, the two-dimensional hash table uses two
hash functions, a “horizontal hash” and a “vertical hash,” which compute the i-
coordinate and j-coordinate. In this example, suppose the keys mentioned above
have the following horizontal and vertical hashes:

key horizontal hash vertical hash
AXB 1 3
AXC 2 3
BXA 1 3

In the case of a collision, the probe strategy searches for an alternative location by
alternating between incrementing i and j (and wrapping around as necessary) until
finding the key being searched for or an empty position. In this example, BXA collides
with AXB in position (1, 3); the probe strategy then looks at (2, 3); since that position
is filled by AXC, the probe strategy then looks at (2, 4), which is where BXA is. If (2, 4)
were filled with a different key, then the probe would have continued with (3, 4), and
then wrapped around vertically to (3, 0).

Implement this approach by writing the methods put(), get(), and containsKey()

in the class twoDHash.TwoDHashMap. (For simplicity, there are no remove() or
iterator() methods.) It is recommended that you finish the private method find()

which can then be used as a helper method for put(), get(), and containsKey().

Assume that the table is square, n × n; the dimension size is stored in instance
variable n. The horizontal and vertical hashes are computed by methods hashHorz()
and hashVert(). Note that although these methods return indices in [0, n), the code
implementing the probe strategy will still need to mod when wrapping around.

Use twoDHash.TDHMTest to test.

5. [Strings.] Consider the reduced form of the class TrieSet provided in pack-
age trie2Arry. Specifically, it has no remove() method and no separate TrieNode

class. Instead of internal nodes, a TrieSet is itself a node, having other TrieSets as
children.

3



Consider the problem of converting a set implemented as a trie into a sorted array of
its keys. For example, the following trie

A

N

N

K

A

I
A

B

E

T

H

A

N

Y

C

A

R

L

would produce the array [ANN, ANNA, ANNIKA, BETH, BETHANY, CARL ].

This can be done recursively if the method is given the array to be filled (the code
calling the method would create a big enough array to begin with), a starting position
in the array (indicating how much of the array has already been filled with keys that
come before the keys in the current subtrie), and a prefix for the keys in the subtrie
(indicating the characters on the path to this subtrie), as in this method signature:

int trie2Array(String[] keys, int start, String prefix)

For example, for the node in the trie above with incoming link labeled T, the method
would be called with start having value 3 (because the strings ANN, ANNA, and ANNIKA

have already been put in the array) and prefix having value BET (because all the
keys in that subtrie begin with BET).

Write the method trie2Array.TrieSet.trie2Array(), which populates the keys

array and returns the number of keys added to the array by that subtrie.

(Hint, for what it is worth: Although this requires a fair amount of thinking, it does
not require very much coding. My solution is only six lines long.)

Use trie2Array.T2ATest to test.

6. [Strings.] Consider the class trieTermRatio.TrieNode which represents a nnode
such as could be used in a trie implementing a set. In particular, the class has instance
variables children, which contains links to children indexed by character adjusted
to 0, and isTerminal, which indicates whether this node is the end of a route for a
key in the set. All other set or map operations (besides add()) have been removed.

Write the static method terminalRatio()) in class triTermRatio.TermRatio which
takes a TrieNode and computes what proportion of nodes are terminal in the trie

4



rooted at the given node. In other words, it computes the ratio of terminal nodes to
all nodes. For example, the trie below contains keys THE, THEORY, THEME, and TUNE:

T

H U

N

E

E

M O

E R

Y

Since this tree has four terminal nodes out of twelve nodes total, its terminal ratio is
4
12

= 1
3
= 0.33333333333.

(Hints: I can think of at least three equally good ways to do this. Also, since the
number of terminals and the number of nodes are ints, make sure you cast correctly
when computing the ratio, which is a double.)

Use trieTermRatio.TRTest to test.

5


