
Linear regression unit:

▶ Simple linear regression with ordinary least squares (Monday)

▶ Lab activity: Linear regression (Wednesday)

▶ Newton’s method and gradient descent (today)

▶ Training linear regression using gradient descent (next week Monday)

Today:

▶ Tidying up recent loose ends

▶ Newton’s method and a sample iterative method

▶ The gradient descent algorithm



What makes linear regression linear?

▶ It finds the line of best fit.

▶ You use linear algebra to do it.

▶ Each term is a linear function of one or more of the original features.

▶ The (original or computed) features are combined linearly.

▶ It was invented by Carl Linnaeus.

▶ It was invented by Linus Torvalds.

How does multiple regression differ from simple linear regression?

▶ It does linear regression multiple times.

▶ It does simple regression on multiple lines.

▶ It has no closed form solution.

▶ It does linear regression on higher dimensional data.



Which is not true of regularization?

▶ It is used to counteract overfitting.

▶ It works by penalizing model complexity.

▶ It works by reducing the influence of less-informative variables.

▶ It is an example of a normal equation.

Match Ridge and LASSO each with the norm it uses in its penalty term.

▶ L1 (Manhattan)

▶ L2 (Euclidean)

▶ Mahalanobis

▶ Canberra



Note that
∑N−1

n=0 (ȳ − yn) = 0 and
∑N−1

n=0 (x̄ − xn) = 0, and so
∑N−1

n=0 x̄(ȳ − yn) = 0

and
∑N−1

n=0 x̄(ȳ − yn) = 0. Plugging these in. . .

θ1 =

∑N−1
n=0 xn(yn − ȳ)∑N−1
n=0 xn(xn − x̄)

=

∑N−1
n=0 xn(yn − ȳ) +

∑N−1
n=0 x̄(ȳ − yn)∑N−1

n=0 xn(xn − x̄) +
∑N−1

n=0 x̄(x̄ − xn)

=

∑N−1
n=0 (xn − x̄)(yn − ȳ)∑N−1

n=0 (xn − x̄)2



Summary of simple linear regression using least squares:

Let x̄ and ȳ be the mean observation and target values, respectively. Then the line of
best fit is

y(x) = θ0 + θ1x

where

θ1 =

∑N−1
n=0 (xn − x̄)(yn − ȳ)∑N−1

n=0 (xn − x̄)2

θ0 = ȳ − θ1x̄



Root mean square error:

LRMSE (θ) =

√√√√ 1

N

N−1∑
n=0

(yn − y(xn))2

Sum square error:

L(θ) =
N−1∑
n=0

(yn − y(xn))2

Sum square error, ‘linear-algebra form”:

L(θ) = ||yT − Xθ||2



Partial derivatives of the sum square error, “non-linear-algebra form”:

L(θ0, θ1, . . . θD) =
∑N−1

n=0 (yn − θ0 − θ1xn,1 − . . .− θDxn,D)2

∂L
∂θ0

= −2
∑N−1

n=0 (yn − θ0 − θ1xn,1 − . . .− θDxn,D)

∂L
∂θi

= −2
∑N−1

n=0 xn,i (yn − θ0 − θ1xn,1 − . . .− θDxn,D)

Redone in “linear-algebra form”:

L(θ) =
∑N−1

n=0 (yn − θTxn)2

= (y − Xθ)T (y − Xθ)

= (yTy − 2yTXθ + θTXTXθ)

∇θL = ∂
∂θ (y

Ty − 2yTXθ + θTXTXθ)

= −2yTX+ 2θTXTX



Now we set the whole lot of the partial derivatives to 0, that is, the zero vector of
length D + 1, and solve for θ.

∇θL = −2yTX+ 2θTXTX

0 = −2yTX+ 2θTXTX

yTX = θTXTX

θT = yTX(XTX)−1

θ = (XTX)−1XTy



Loss function for ridge regularization (ridge regression):

Lridge(θ) = ||yT − θTX||2︸ ︷︷ ︸
original loss

+ α||θ||2︸ ︷︷ ︸
regularizer

Finding a closed form for ridge regression (almost):

∇θL = −2yTX+ 2θTXTX+ 2αθ
0 = −2yTX+ 2θTXTX+ 2αθ

yTX = θTXTX+ αθ
= θT (XTX+ αI)

θT = yTX(XTX+ αI)−1

θ = (XTX+ αI)−1XTy

Loss function for LASSO regularization

LLASSO(θ) = ||yT − θTX||2 + α
D∑
i=1

|θi | = ||yT − θTX||2 + α||θ||1



Loss function for ridge regularization done more carefully:

Lridge(θ) = ||yT − θTX||2︸ ︷︷ ︸
original loss

+ α

D∑
i=1

θ2i︸ ︷︷ ︸
regularizer

Finding a closed form for ridge regression. Let θ̂ be θ but with 0 in index 0.

∇θL = −2yTX+ 2θTXTX+ 2αθ̂

0 = −2yTX+ 2θTXTX+ 2αθ̂

yTX = θTXTX+ αθ̂
= θT (XTX+ A)

θT = yTX(XTX+ A)−1

θ = (XTX+ A)−1XTy

where A is like αI but with 0 in the top left corner.



Deriving Newton’s method: Suppose we have a function f with derivative f ′. (If we
don’t know f ′ then we can approximate it numerically.) We want to find a root xr ,
that is an x value where the curve of f crosses the x-axis, f (xr ) = 0.
Let x0 be a guess at the root. Then

y − y0 = m(x − x0)
y − f (x0) = f ′(x0)(x − x0)

y = f ′(x0)(x − x0) + f (x0)
y = f ′(x0)x + (f (x0)− x0f

′(x0))

Set y = 0 for this tangent and solve for x .

0 = f ′(x0)x + (f (x0)− x0f
′(x0))

f ′(x0)x = x0f
′(x0)− f (x0)

x1 = x0f ′(x0)−f (x0)
f ′(x0)

To compute an improved guess xi+1 over a current guess xi :

xi+1 =
xi f

′(xi )− f (xi )

f ′(xi )



Coming up:

Read textbook sections on linear regression(due end-of-day Mon, Jan 30)
Do linear regression assignment (due end-of-day Tues, Jan 31)

Take gradient descent quiz (due classtime Fri, Feb 3)

Project proposal (due end-of-day Fri, Feb 3)


