Linear regression unit:

- Simple linear regression with ordinary least squares (last week Monday)
- Lab activity: Linear regression (last week Wednesday)
- Newton's method and gradient descent (last week Friday and this week Monday)
- Training linear regression using gradient descent (today)
- [Begin logistic regression (Friday)]

Today:

- Counting the costs
- Revisiting loss functions
- Applying gradient descent

The closed form solution for plain old linear regression is

$$
\boldsymbol{\theta}^{T}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}
$$

For ridge regression, it is

$$
\boldsymbol{\theta}^{T}=\left(\mathbf{X}^{T} \mathbf{X}+\mathbf{A}\right)^{-1} \mathbf{X}^{T} \boldsymbol{y}
$$

The mean square error:

$$
\mathcal{L}_{M S E}(\boldsymbol{\theta})=\frac{1}{N}\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}^{T}\right\|^{2}=\frac{1}{N}\|\boldsymbol{y}-\mathbf{X} \boldsymbol{\theta}\|^{2}
$$

The gradient of this loss function:

$$
\nabla_{\boldsymbol{\theta}} \mathcal{L}=\frac{1}{N}\left(-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}\right)
$$

For ridge:

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta}) & =\frac{1}{N}\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}\right\|^{2}+\alpha\|\theta\| \|^{2} \\
\nabla_{\boldsymbol{\theta}} \mathcal{L} & =\frac{1}{N}\left(-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}\right)+2 \alpha \boldsymbol{\theta}
\end{aligned}
$$

For LASSO:

$$
\begin{aligned}
\mathcal{L}(\boldsymbol{\theta}) & =\frac{1}{N}\left\|\boldsymbol{y}^{T}-\boldsymbol{\theta}^{T} \mathbf{X}\right\|^{2}+\alpha\|\theta\| \|^{1} \\
\nabla_{\boldsymbol{\theta}} \mathcal{L} & =\frac{1}{N}\left(-2 \boldsymbol{y}^{T} \mathbf{X}+2 \boldsymbol{\theta}^{T} \mathbf{X}^{T} \mathbf{X}\right)+2 \alpha\left(\operatorname{sign}\left(\theta_{i}\right)\right)
\end{aligned}
$$

Coming up:

Read textbook sections on linear regression (due end-of-day Mon, Jan 30) Do linear regression assignment (due end-of-day Tues, Jan 31)

Take gradient descent quiz (due classtime Fri, Feb 3)
Project proposal (due end-of-day Fri, Feb 3)

